
KVM Virtual
Machines

Bridge Zero Copy Transmit
PCI Passthrough
QEMU Device Properties
SR-IOV
Mount QCOW2
Direct Boot Kernel
Serial Only
EFI

Bridge Zero Copy Transmit

Source: Red Hat - Network Tuning Techniques

Zero copy transmit mode is effective on large packet sizes. It typically reduces
the host CPU overhead by up to 15% when transmitting large packets between a
guest network and an external network, without affecting throughput.

“

/etc/modprobe.d/vhost-net.conf
+ options vhost_net	experimental_zcopytx=1

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/virtualization_tuning_and_optimization_guide/index#sect-Virtualization_Tuning_Optimization_Guide-Networking-Zero_copy_transmit

PCI Passthrough
Ensure IOMMU Is Activated

Ensure Kernel Modules
Debian

Bind vfio-pci Driver to Devices
Now you can bind the vfio-pci driver to your devices at startup so they can be passed through to a
VM. There are two ways of doing this, the first way is quick and easy but forces you to blacklist an
entire driver which would stop you from being able to use that driver for another device that you
aren't passing through. The second way is a little more complciated but allows you to target
individual devices without blacklisting an entire driver.

1) Blacklist Drivers

First step of this process is to make sure that your hardware is even capable of
this type of virtualization. You need to have a motherboard, CPU, and BIOS that
has an IOMMU controller and supports Intel-VT-x and Intel-VT-d or AMD-v and
AMD-vi. Some motherboards use different terminology for these, for example
they may list AMD-v as SVM and AMD-vi as IOMMU controller.

“

/etc/modules
/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.
+ vfio_pci
+ vfio
+ vfio_iommu_type1
+ vfio_virqfd

By running lspci -knn you can easily find out which drivers are being used for a device so you know
what driver to blacklist in addition to their <vendor>:<device> identifier. Armed with both of these
we can blacklist the drivers we don't want being used and let the vfio-pci driver know which
device(s) to bind to.

Below is an example of blacklisting the driver i915 (Intel iGPU driver) so I can pass through my
iGPU to a virtual machine. The driver is blacklisted so it won't load and the device identified by
<vendor>:<device> is added as a parameter to the vfio-pci driver so it knows which device to bind
with.

2) Alias Devices

Using lspci -knn it is easy to find a devices B/D/F identifier and its <vendor>:<device> identifier.
Then we can find its modalias by running cat /sys/bus/pci/devices/<B/D/F>/modalias . Armed with both of
these we can let the vfio-pci module know which devices to bind to.

Rebuild initramfs
Debian

Update Bootloader
Update Kernel Parameters
Grub2

/etc/modprobe.d/blacklist.conf
+ blacklist i915

/etc/modprobe.d/vfio.conf
+ options vfio-pci ids=8086:3e92 disable_vga=1

/etc/modprobe.d/vfio.conf
+ # Intel UHD 630 (8086:3e92)
+ alias pci:v00008086d00003E92sv00001458sd0000D000bc03sc80i00 vfio-pci
+
+ options vfio-pci ids=8086:3e92 disable_vga=1

update-initramfs -u

https://en.wikipedia.org/wiki/PCI_configuration_space#Bus_enumeration

Systemd

Rebuild Bootloader Options
Grub

systemd-boot

Proxmox

/etc/default/grub
- GRUB_CMDLINE_LINUX_DEFAULT="quiet"
+ GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=igfx_off iommu=pt video=efifb:off"

/etc/kernel/cmdline
- root=ZFS=rpool/ROOT/pve-1 boot=zfs
+ root=ZFS=rpool/ROOT/pve-1 boot=zfs intel_iommu=igfx_off iommu=pt video=efifb:off

update-grub

bootctl update

pve-efiboot-tool refresh

QEMU Device Properties
Example: Rename Device

Example: Move MSI-X

To set these properties you can edit the VM configuration and add an args parameter.

The QEMU vfio-pci device option is x-msix-relocation= which allows specifying
the bar to use for the MSI-X tables, ex. bar0...bar5. Since this device uses a 64bit
bar0, we can either extend that BAR or choose another, excluding bar1, which is
consumed by the upper half of bar0.

“

args: -set device.hostpci1.x-msix-relocation=bar2

SR-IOV
Ensure IOMMU Is Activated

Update Bootloader
Update Kernel Parameters
NOTE Be sure to replace intel_iommu=on with amd_iommu=on if you're running on AMD instead
of Intel.

Grub2

Systemd

Rebuild Bootloader Options
Grub

First step of this process is to make sure that your hardware is even capable of
this type of virtualization. You need to have a motherboard, CPU, and BIOS that
has an IOMMU controller and supports Intel-VT-x and Intel-VT-d or AMD-v and
AMD-vi. Some motherboards use different terminology for these, for example
they may list AMD-v as SVM and AMD-vi as IOMMU controller.

“

/etc/default/grub
- GRUB_CMDLINE_LINUX_DEFAULT="quiet"
+ GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=on iommu=pt

/etc/kernel/cmdline
- root=ZFS=rpool/ROOT/pve-1 boot=zfs
+ root=ZFS=rpool/ROOT/pve-1 boot=zfs intel_iommu=on iommu=pt

update-grub

systemd-boot

Proxmox

Enable Virtual Functions
Find the link name you want to add virtual function to using ip link . In this scenario we're going to
say we want to add 4 virtual functions to link eth2 . You can find the maximum number of virtual
function possible by reading the sriov_totalvfs from sysfs...

To enable virtual functions you just echo the number you want to sriov_numvfs in sysfs...

Make Persistent
Sysfs is a virtual file system in Linux kernel 2.5+ that provides a tree of system devices. This
package provides the program 'systool' to query it: it can list devices by bus, class, and topology.

In addition this package ships a configuration file /etc/sysfs.conf which allows one to conveniently
set sysfs attributes at system bootup (in the init script etc/init.d/sysfsutils).

Configure sysfsutils
To make these changes persistent, you need to update /etc/sysfs.conf so that it gets set on startup.

bootctl update

pve-efiboot-tool refresh

cat /sys/class/net/enp10s0f0/device/sriov_totalvfs
7

echo 4 > /sys/class/net/enp10s0f0/device/sriov_numvfs

apt install sysfsutils

echo "class/net/eth2/device/sriov_numvfs = 4" >> /etc/sysfs.conf

Mount QCOW2
Load Kernel module

Connect the image to NBD (Network Block Device) device and then mount that device/partition

When done unmount, disconnect, and if necessary unload the Kernel module.

modprobe nbd

qemu-nbd --connect=/dev/nbd0 /var/lib/vz/images/100/vm-100-disk-1.qcow2
mount /dev/nbd0p1 /mnt/somepoint/

umount /mnt/somepoint/
qemu-nbd --disconnect /dev/nbd0
rmmod nbd

Direct Boot Kernel
Provide path to Kernel and optionally initrd

qemu-system-aarch64 ... -kernel /boot/vmlinuz-6.9.0-rc6+ -initrd /boot/initrd.img-6.9.0-rc6+

Serial Only
AMD64

ARM64

qemu-system-x86_64 ... -nographic -append "root=/dev/vda rw console=ttyS0" -hda rootfs.img

qemu-system-aarch64 ... -nographic -append "root=/dev/vda rw console=ttyAMA0" -hda rootfs.img

Some emulated consoles will need a speed appended like console=ttyAMA0,115200

EFI
To use OVMF/AAVMF for EFI add these parameters to qemu-system-* . Normally you can find
OVMF_CODE.fd and OVMF_VARS.fd (or variants of them) in /usr/share

-drive if=pflash,format=raw,readonly,file=OVMF_CODE-pure-efi.fd
-drive if=pflash,format=raw,file=OVMF_VARS.fd

