
Linux
Copy a GPT Partition Table to Another Disk
Isolate CPUs from Kernel Scheduler
KVM Virtual Machines

Bridge Zero Copy Transmit
PCI Passthrough
QEMU Device Properties
SR-IOV

LXC

LXC GPU Access
LXC NIC Passthrough
netfilter/iptable logging
LXC USB Passthrough

Passwords
Serial Console
Systemd
Linux Unified Key Setup (LUKS)
Reboot
Network Storage

Copy a GPT Partition Table
to Another Disk
Command Syntax
To clone GPT partition table command syntax are as following.

source

sgdisk -R <New_Disk> <Existing_Disk>

Be sure to take note of the order of the disks. It looks like many commands with a <from>
<to> ordering but actually New_Disk is an argument to the -R parameter.

https://tecadmin.net/copy-a-gpt-partition-table-to-new-disk/

Isolate CPUs from Kernel
Scheduler
Disable CPU(s)
Sysfs

Kernel Parameter

Use Isolated CPU(s)

echo 0 > /sys/devices/system/cpu/cpu4/online

When disabling a CPU this way any processes already assigned to this core will keep working
but no new work will be assigned.

isolcpus — Isolate CPUs from the kernel scheduler.

Synopsis isolcpus= cpu_number [, cpu_number ,...]

Description Remove the specified CPUs, as defined by the cpu_number values,
from the general kernel SMP balancing and scheduler algroithms. The only way
to move a process onto or off an "isolated" CPU is via the CPU affinity syscalls.
cpu_number begins at 0, so the maximum value is 1 less than the number of
CPUs on the system.

This option is the preferred way to isolate CPUs. The alternative, manually
setting the CPU mask of all tasks in the system, can cause problems and
suboptimal load balancer performance.

“

taskset [options] -p [mask] pid

taskset is used to set or retrieve the CPU affinity of a running process given its
PID or to launch a new COMMAND with a given CPU affinity. CPU affinity is a
scheduler property that "bonds" a process to a given set of CPUs on the system.
The Linux scheduler will honor the given CPU affinity and the process will not run
on any other CPUs. Note that the Linux scheduler also supports natural CPU
affinity: the scheduler attempts to keep processes on the same CPU as long as
practical for performance reasons. Therefore, forcing a specific CPU affinity is
useful only in certain applications.

“

KVM Virtual Machines

KVM Virtual Machines

Bridge Zero Copy Transmit

Source: Red Hat - Network Tuning Techniques

Zero copy transmit mode is effective on large packet sizes. It typically reduces
the host CPU overhead by up to 15% when transmitting large packets between a
guest network and an external network, without affecting throughput.

“

/etc/modprobe.d/vhost-net.conf
+ options vhost_net	experimental_zcopytx=1

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/virtualization_tuning_and_optimization_guide/index#sect-Virtualization_Tuning_Optimization_Guide-Networking-Zero_copy_transmit

KVM Virtual Machines

PCI Passthrough
Ensure IOMMU Is Activated

Ensure Kernel Modules
Debian

Bind vfio-pci Driver to Devices
Now you can bind the vfio-pci driver to your devices at startup so they can be passed through to a
VM. There are two ways of doing this, the first way is quick and easy but forces you to blacklist an
entire driver which would stop you from being able to use that driver for another device that you
aren't passing through. The second way is a little more complciated but allows you to target
individual devices without blacklisting an entire driver.

1) Blacklist Drivers

First step of this process is to make sure that your hardware is even capable of
this type of virtualization. You need to have a motherboard, CPU, and BIOS that
has an IOMMU controller and supports Intel-VT-x and Intel-VT-d or AMD-v and
AMD-vi. Some motherboards use different terminology for these, for example
they may list AMD-v as SVM and AMD-vi as IOMMU controller.

“

/etc/modules
/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.
+ vfio_pci
+ vfio
+ vfio_iommu_type1
+ vfio_virqfd

By running lspci -knn you can easily find out which drivers are being used for a device so you know
what driver to blacklist in addition to their <vendor>:<device> identifier. Armed with both of these
we can blacklist the drivers we don't want being used and let the vfio-pci driver know which
device(s) to bind to.

Below is an example of blacklisting the driver i915 (Intel iGPU driver) so I can pass through my
iGPU to a virtual machine. The driver is blacklisted so it won't load and the device identified by
<vendor>:<device> is added as a parameter to the vfio-pci driver so it knows which device to bind
with.

2) Alias Devices

Using lspci -knn it is easy to find a devices B/D/F identifier and its <vendor>:<device> identifier.
Then we can find its modalias by running cat /sys/bus/pci/devices/<B/D/F>/modalias . Armed with both of
these we can let the vfio-pci module know which devices to bind to.

Rebuild initramfs
Debian

Update Bootloader
Update Kernel Parameters
Grub2

/etc/modprobe.d/blacklist.conf
+ blacklist i915

/etc/modprobe.d/vfio.conf
+ options vfio-pci ids=8086:3e92 disable_vga=1

/etc/modprobe.d/vfio.conf
+ # Intel UHD 630 (8086:3e92)
+ alias pci:v00008086d00003E92sv00001458sd0000D000bc03sc80i00 vfio-pci
+
+ options vfio-pci ids=8086:3e92 disable_vga=1

update-initramfs -u

https://en.wikipedia.org/wiki/PCI_configuration_space#Bus_enumeration

Systemd

Rebuild Bootloader Options
Grub

systemd-boot

Proxmox

/etc/default/grub
- GRUB_CMDLINE_LINUX_DEFAULT="quiet"
+ GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=igfx_off iommu=pt video=efifb:off"

/etc/kernel/cmdline
- root=ZFS=rpool/ROOT/pve-1 boot=zfs
+ root=ZFS=rpool/ROOT/pve-1 boot=zfs intel_iommu=igfx_off iommu=pt video=efifb:off

update-grub

bootctl update

pve-efiboot-tool refresh

KVM Virtual Machines

QEMU Device Properties
Example: Rename Device

Example: Move MSI-X

To set these properties you can edit the VM configuration and add an args parameter.

The QEMU vfio-pci device option is x-msix-relocation= which allows specifying
the bar to use for the MSI-X tables, ex. bar0...bar5. Since this device uses a 64bit
bar0, we can either extend that BAR or choose another, excluding bar1, which is
consumed by the upper half of bar0.

“

args: -set device.hostpci1.x-msix-relocation=bar2

KVM Virtual Machines

SR-IOV
Ensure IOMMU Is Activated

Update Bootloader
Update Kernel Parameters
NOTE Be sure to replace intel_iommu=on with amd_iommu=on if you're running on AMD instead
of Intel.

Grub2

Systemd

Rebuild Bootloader Options
Grub

First step of this process is to make sure that your hardware is even capable of
this type of virtualization. You need to have a motherboard, CPU, and BIOS that
has an IOMMU controller and supports Intel-VT-x and Intel-VT-d or AMD-v and
AMD-vi. Some motherboards use different terminology for these, for example
they may list AMD-v as SVM and AMD-vi as IOMMU controller.

“

/etc/default/grub
- GRUB_CMDLINE_LINUX_DEFAULT="quiet"
+ GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=on iommu=pt

/etc/kernel/cmdline
- root=ZFS=rpool/ROOT/pve-1 boot=zfs
+ root=ZFS=rpool/ROOT/pve-1 boot=zfs intel_iommu=on iommu=pt

update-grub

systemd-boot

Proxmox

Enable Virtual Functions
Find the link name you want to add virtual function to using ip link . In this scenario we're going to
say we want to add 4 virtual functions to link eth2 . You can find the maximum number of virtual
function possible by reading the sriov_totalvfs from sysfs...

To enable virtual functions you just echo the number you want to sriov_numvfs in sysfs...

Make Persistent
Sysfs is a virtual file system in Linux kernel 2.5+ that provides a tree of system devices. This
package provides the program 'systool' to query it: it can list devices by bus, class, and topology.

In addition this package ships a configuration file /etc/sysfs.conf which allows one to conveniently
set sysfs attributes at system bootup (in the init script etc/init.d/sysfsutils).

Configure sysfsutils
To make these changes persistent, you need to update /etc/sysfs.conf so that it gets set on startup.

bootctl update

pve-efiboot-tool refresh

cat /sys/class/net/enp10s0f0/device/sriov_totalvfs
7

echo 4 > /sys/class/net/enp10s0f0/device/sriov_numvfs

apt install sysfsutils

echo "class/net/eth2/device/sriov_numvfs = 4" >> /etc/sysfs.conf

LXC

LXC

LXC GPU Access
Giving a LXC guest GPU access allows you to use a GPU in a guest while it is still available for use in
the host machine. This is a big advantage over virtual machines where only a single host or guest
can have access to a GPU at one time. Even better, multiple LXC guests can share a GPU with the
host at the same time.

Determine Device Major/Minor Numbers
To allow a container access to the device you'll have to know the devices major/minor numbers.
This can be found easily enough by running ls -l in /dev/ . As an example to pass through the
integated UHD 630 GPU from an Core i7 8700k you would first list the devices where are created
under /dev/dri .

From that you can see the major device number is 226 and the minors are 0 and 128 .

Provide LXC Access
In the configuration file you'd then add lines to allow the LXC guest access to that device and then
also bind mount the devices from the host into the guest. In the example above since both devices
share the same major number it is possible to use a shorthand notation of 226:* to represent all
minor numbers with major number 226 .

The information on this page is written for a host running Proxmox but should be easy to
adapt to any machine running LXC/LXD.

Since a device is being shared between two systems there are almost certainly some
security implications and I haven't been able to determine what degree of security you're
giving up to share a GPU.

root@blackbox:~# ls -l /dev/dri
total 0
drwxr-xr-x 2 root root 80 May 12 21:54 by-path
crw-rw---- 1 root video 226, 0 May 12 21:54 card0
crw-rw---- 1 root render 226, 128 May 12 21:54 renderD128

Allow unprivileged Containers Access
In the example above we saw that card0 and renderD128 are both owned by root and have their
groups set to video and render . Because the "unprivilged" part of LXC unprivileged container works
by mapping the UIDs (user IDs) and GIDs (group IDs) in the LXC guest namespace to an unused
range of IDs on host, it is necessary to create a custom mapping for that namespace that maps
those groups in the LXC guest namespace to the host groups while leaving the rest unchanged so
you don't lose the added security of running an unprivilged container.

First you need to give root permission to map the group IDs. You can look in /etc/group to find the
GIDs of those groups, but in this example video = 44 and render = 108 on our host system. You
should add the following lines that allow root to map those groups to a new GID.

Then you'll need to create the ID mappings. Since you're just dealing with group mappings the UID
mapping can be performed in a single line as shown on the first line addition below. It can be read
as "remap 65,536 of the LXC guest namespace UIDs from 0 through 65,536 to a range in the host
starting at 100,000 ." You can tell this relates to UIDs because of the u denoting users. It wasn't
necessary to edit /etc/subuid because that file already gives root permission to perform this
mapping.

You have to do the same thing for groups which is the same concept but slightly more verbose. In
this example when looking at /etc/group in the LXC guest it shows that video and render have GIDs
of 44 and 106 . Although you'll use g to denote GIDs everything else is the same except it is
necessary to ensure the custom mappings cover the whole range of GIDs so it requires more lines.
The only tricky part is the second to last line that shows mapping the LXC guest namespace GID for
render (106) to the host GID for render (108) because the groups have different GIDs.

/etc/pve/lxc/*.conf
+ lxc.cgroup.devices.allow: c 226:* rwm
+ lxc.mount.entry: /dev/dri/card0 dev/dri/card0 none bind,optional,create=file,mode=0666
+ lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file

/etc/subgid
+ root:44:1
+ root:108:1

/etc/pve/lxc/*.conf
 lxc.cgroup.devices.allow: c 226:* rwm
 lxc.mount.entry: /dev/dri/card0 dev/dri/card0 none bind,optional,create=file,mode=0666
 lxc.mount.entry: /dev/dri/renderD128 dev/dri/renderD128 none bind,optional,create=file
+ lxc.idmap: u 0 100000 65536
+ lxc.idmap: g 0 100000 44
+ lxc.idmap: g 44 44 1

Beaues it can get confusing to read I just wanted show each line with some comments...

Add root to Groups
Because root 's UID and GID in the LXC guest's namespace isn't mapped to root on the host you'll
have to add any users in the LXC guest to the groups video and render to have access the devices.
As an example to give root in our LXC guest's namespace access to the devices you would simply
add root to the video and render group.

Potential Alernative
lxc.mount.entry - static uid/gid in LXC guest

Resources
Proxmox: Unprivileged LXC containers

+ lxc.idmap: g 45 100045 61
+ lxc.idmap: g 106 108 1
+ lxc.idmap: g 107 100107 65429

+ lxc.idmap: u 0 100000 65536 // map UIDs 0-65536 (LXC namespace) to 100000-165535 (host namespace)
+ lxc.idmap: g 0 100000 44 // map GIDs 0-43 (LXC namspace) to 100000-100043 (host namespace)
+ lxc.idmap: g 44 44 1 // map GID 44 to be the same in both namespaces
+ lxc.idmap: g 45 100045 61 // map GIDs 45-105 (LXC namspace) to 100045-100105 (host namespace)
+ lxc.idmap: g 106 108 1 // map GID 106 (LXC namspace) to 108 (host namespace)
+ lxc.idmap: g 107 100107 65429 // map GIDs 107-65536 (LXC namspace) to 100107-165536 (host
namespace)

usermod --append --groups video,render root

https://www.reddit.com/r/Proxmox/comments/q5wbl0/lxcmountentry_static_uidgid_in_lxc_guest/
https://pve.proxmox.com/wiki/Unprivileged_LXC_containers

LXC

LXC NIC Passthrough
On the rare occation you have a good reason to forgo the small overhead of an veth (Virtual
Ethernet) device connected to an ethernet bridge it is possible to pass a physical network interface
directly to a LXC host.

To pass a physical device you just need to provide lxc.net.[index].type and lxc.net.[index].link
parameters in the LXC config. You may optionally provide a name for the link as well with
lxc.net.[index].name . Just be sure your index value is unique among all network interfaces fot the
LXC container including those Proxmox may add if you running your LXC hosts on Proxmox.

lxc.net.0.type: phys
lxc.net.0.link: enp1s0
optional
lxc.net.0.name: eth0

https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://wiki.archlinux.org/index.php/Network_bridge

LXC

netfilter/iptable logging

Source: lxc-users.linuxcontainers.narkive.com

There are two ways to get logging working on guests running in Namespaces. The first is to simply
enable it on even though it is off by default due to the security concerns mentioned above. The
second and better way is to use User space logging which doesn't carry the same restrictions
because it doesn't interact with Kernel space in the same way. Besides the User space logging
method being the best security practice, anytime it is possible to modify the host machine less it is
better in my opinion.

Method 1: Userspace Logging (on
guest)
Install ulogd2

Replace LOG in any iptable/netfilter rules with NFLOG

Source: lxadm.com

Logging from network namespaces other than init has been disabled since
kernel 3.10 in order to prevent host kernel log flooding from inside a container.“

apt install ulogd2

- -A INPUT -j LOG
+ -A INPUT -j NFLOG

https://lxc-users.linuxcontainers.narkive.com/fuIM2bZg/lxc-and-netfilter-log
https://lxadm.com/Iptables:_LOG_target_not_working_in_LXD_containers

Method 2: Enable Logging In
Namespaces (on host)

Source: lxc-users.linuxcontainers.narkive.com

This will enable all netfilter (the nf part in nf_log_all_netns) logging from namespaces until the next
reboot. It can also be enabled persistently using one of the following methods…

Option 1: Always On with sysctl.conf
Add a single line to sysctl.conf so the setting gets applied at boot.

Option 2: On Demand with Snippets (for Proxmox only)
Add a bash script to use as a snippet .

Logging from network namespaces other than init has been disabled since
kernel 3.10 in order to prevent host kernel log flooding from inside a container.

If you have kernel >= 4.11 or one with commit 2851940ffee3 ("netfilter: allow
logging from non-init namespaces") backported, you can enable netfilter logging
from other network namespaces by...

“

sysctl net.netfilter.nf_log_all_netns=1

echo "net.netfilter.nf_log_all_netns = 1" >> /etc/sysctl.conf

/var/lib/vz/snippets/nf_log_all_netns.sh
+ #!/bin/bash
+
+ case $2 in
+ pre-start)
+ echo "[pre-start]"
+ echo -e "\tEnabling netfilter namespace logging."
+ echo -e "\t$(sysctl net.netfilter.nf_log_all_netns=1)"
+ ;;
+ pre-stop)

https://lxc-users.linuxcontainers.narkive.com/fuIM2bZg/lxc-and-netfilter-log

Then add the "hookscript" to that container. If your container ID was 100 it would look like

+ echo "[pre-stop]"
+ echo -e "\tDisabling netfilter namespace logging."
+ echo -e "\t$(sysctl net.netfilter.nf_log_all_netns=0)"
+ ;;
+ esac

$ pct set 100 -hookscript local:snippets/nf_log_all_netns.sh

LXC

LXC USB Passthrough
Passing through a USB device with LXC allows your LXC guest access to a physical USB device
plugged into the host system.

Locate Bus/Device

Determine Device Major/Minor Numbers

From that you can see the major device number is 189 and the minor is 3 .

Provide LXC Access
In the configuration file you'd then add lines to allow the LXC guest access to that device and then
also bind mount the devices from the host into the guest. In the example above since both devices
share the same major number it is possible to use a shorthand notation of 189:* to represent all
minor numbers with major number 189 .

Allow unprivileged Containers Access

The information on this page is written for a host running Proxmox but should be easy to
adapt to any machine running LXC/LXD.

root@vault:~# lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 13d3:3273 IMC Networks 802.11 n/g/b Wireless LAN USB Mini-Card
Bus 001 Device 004: ID 10c4:8a2a Silicon Labs HubZ Smart Home Controller
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

root@vault:~# ls -l /dev/bus/usb/001/004
crw-rw-r-- 1 root root 189, 3 Oct 3 17:17 /dev/bus/usb/001/004

/etc/pve/lxc/*.conf
+ lxc.cgroup.devices.allow: c 189:* rwm
+ lxc.mount.entry: /dev/bus/usb/001/020 dev/bus/usb/001/020 none bind,optional,create=file,mode=664

Resources
USB Passthrough to an LXC (Proxmox)

incomplete

https://medium.com/@konpat/usb-passthrough-to-an-lxc-proxmox-15482674f11d

Passwords
Generate Random Password
With pwgen (generate 1 password, length 16, with a least a number and uppercase character)

Encrypt Password
With openssl (encrypt password from password.txt using SHA-512 and random salt)

Paramter Description

-salt string use specified salt instead of random

-crypt encrypt with crypt algorithm (default)

-1 encrypt with MD5 algorithm

-5 encrypt with SHA-256-crypt algorithm

-6 encrypt with SHA-512-crypt algorithm

pwgen -cns 16 1

openssl passwd -in password.txt -6

Serial Console
Output to Serial Console
Make sure the kernel is started with the following parameter…

Dual Output
It is possible to have the kernel write to both the standard pseudo-terminal (tty0) and the serial
console (ttyS0) by adding the following kernel parameters…

View Console
It is possible to view serial console output using the screen command. With a USB-to-Serial adapter
plugged in you may see a device called something like /dev/tty.usbserial-AG0JL5ZB that will act as the
tty device.

Parameters explained from man screen

Parameter Description

<baud_rate> This affects transmission as well as receive speed (usually
300, 1200, 9600 or 19200)

cs8 or cs7 Specify the transmission of eight (or seven) bits per byte

ixon or -ixon Enables (or disables) software flow-control (CTRL-S/CTRL-
Q) for sending data

ixoff or -ixon Enables (or disables) software flow-control for receiving
data

console=ttyS0,115200

console=ttyS0,9600 console=tty0

screen /dev/tty.usbserial-AG0JL5ZB 115200,cs8,ixon

Parameter Description

istrip or -istrip Clear (or keep) the eight bit in each received byte

Systemd
Introduction
systemd is a software suite that provides an array of system components for Linux operating
systems. Its main aim is to unify service configuration and behavior across Linux distributions;
systemd's primary component is a "system and service manager"—an init system used to
bootstrap user space and manage user processes.

Documentation
systemd.unit
systemd.service

Common Parameters
Unit

Option Description

Description A short description of the unit.

Documentation A list of URIs referencing documentation.

Before , After The order in which units are started.

Requires If this unit gets activated, the units listed here will be
activated as well. If one of the other units gets deactivated
or fails, this unit will be deactivated.

Wants Configures weaker dependencies than Requires . If any of
the listed units does not start successfully, it has no
impact on the unit activation. This is the recommended
way to establish custom unit dependencies.

Conflicts If a unit has a Conflicts setting on another unit, starting the
former will stop the latter and vice versa.

https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html

Get a complete list of parameters by running man systemd.unit

Install
Option Description

Alias A space-separated list of additional names for the unit.
Most systemctl commands, excluding systemctl enable , can
use aliases instead of the actual unit name.

RequiredBy , WantedBy The current service will be started when the listed services
are started. See the description of Wants and Requires in
the [Unit] section for details.

Also Specifies a list of units to be enabled or disabled along
with this unit when a user runs systemctl enable or
systemctl disable .

Get a complete list of parameters by running man systemd.unit

Service
Option Description

Type Configures the process start-up type. One of:
simple (default) – starts the service

immediately. It is expected that the main
process of the service is defined in ExecStart .
forking – considers the service started up once

the process forks and the parent has exited.
oneshot – similar to simple , but it is expected

that the process has to exit before systemd
starts follow-up units (useful for scripts that do
a single job and then exit). You may want to set
RemainAfterExit=yes as well so that systemd still

considers the service as active after the
process has exited.
dbus – similar to simple , but considers the

service started up when the main process gains
a D-Bus name.
notify – similar to simple , but considers the

service started up only after it sends a special
signal to systemd.
idle – similar to simple , but the actual

execution of the service binary is delayed until
all jobs are finished.

Option Description

ExecStart Commands with arguments to execute when the service is
started. Type=oneshot enables specifying multiple custom
commands that are then executed sequentially.
ExecStartPre and ExecStartPost specify custom commands

to be executed before and after ExecStart .

ExecStop Commands to execute to stop the service started via
ExecStart .

ExecReload Commands to execute to trigger a configuration reload in
the service.

Restart With this option enabled, the service shall be restarted
when the service process exits, is killed, or a timeout is
reached with the exception of a normal stop by the
systemctl stop command.

RemainAfterExit If set to True , the service is considered active even when
all its processes exited. Useful with Type=oneshot . Default
value is False .

Get a complete list of parameters by running man systemd.service

Example
[Unit]
Description=The NGINX HTTP and reverse proxy server
After=syslog.target network.target remote-fs.target nss-lookup.target

[Service]
Type=forking
PIDFile=/run/nginx.pid
ExecStartPre=/usr/sbin/nginx -t
ExecStart=/usr/sbin/nginx
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

[Unit]
Description=The Apache HTTP Server

source: shellhacks.com

After=network.target remote-fs.target nss-lookup.target

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/httpd
ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
ExecStop=/bin/kill -WINCH ${MAINPID}
KillSignal=SIGCONT
PrivateTmp=true

[Install]
WantedBy=multi-user.target
[Unit]
Description=Redis persistent key-value database
After=network.target

[Service]
ExecStart=/usr/bin/redis-server /etc/redis.conf --daemonize no
ExecStop=/usr/bin/redis-shutdown
User=redis
Group=redis

[Install]
WantedBy=multi-user.target

https://www.shellhacks.com/systemd-service-file-example/

Linux Unified Key Setup
(LUKS)

Prepare Disks

[Source](https://wiki.archlinux.org/title/Dm-crypt/Drive_preparation)
There are multiple ways to prepare a disk and some other potentially better ones listed on the
page linked to above. Because I want to wipe my disks as quickly as possible and they were both
the same size I am using a slightly more complicated method. This method creates the equivalent
of filling the disks with the output from /dev/urandom but does so faster by using the output of
encrypting /dev/zero and writing that to the disks instead. I save even more time by using tee and
process substitution to redirect the output to both drives at once. Just for good measure I am using
pv to measure the speed at which I am writing and to track my progress.

Partition

I messed up editing this page and some of the information is missing and in the wrong order.

All the examples below assume wanting to setup a btrfs pool on two disks `/dev/sdX` and
`/dev/sdY` that will be used just for additional storage.

Before encrypting a drive, it is recommended to perform a secure erase of the
disk by overwriting the entire drive with random data. To prevent cryptographic
attacks or unwanted file recovery, this data is ideally indistinguishable from data
later written by dm-crypt.

“

PASS=$(tr -cd '[:alnum:]' < /dev/urandom | head -c128)
openssl enc -aes-256-ctr -pass pass:"$PASS" -nosalt < /dev/zero | dd ibs=4K | pv | tee >(dd obs=64K
oflag=direct of=/dev/sdX) | dd obs=64K oflag=direct of=/dev/sdY

Although LUKS can be layered on top of redundant storage (btrfs -or- mdadm + dm-integrity) for
my usages it almost always makes sense to layer those things on top of LUKS instead. My goal is
just to have an encrypted filesystem for storage of data so I only need to create one partition on
each disk.

Encrypt
Setup LUKS with passphrase encrypted drives.

Create encryption key.

Add keyfile as optional decryption key.

Unlock Devices

Create btrfs Pool

sgdisk --clear --new=0:0:0 /dev/sdX
sgdisk --clear --new=0:0:0 /dev/sdY

cryptsetup luksFormat /dev/sdX1 cryptbtrpool_1
cryptsetup luksFormat /dev/sdY1 cryptbtrpool_2

dd if=/dev/urandom bs=512 count=4 of=/etc/keyfile

cryptsetup luksAddKey /dev/sdX1 /etc/keyfile
cryptsetup luksAddKey /dev/sdY1 /etc/keyfile

cryptsetup open /dev/sdX1 cryptbtrpool_1 --key-file=/etc/keyfile
cryptsetup open /dev/sdY1 cryptbtrpool_2 --key-file=/etc/keyfile

You can use LUKS devices like any other block device and format them any way you want.
However below I am combining them into a RAID1 btrfs filesystem that spans both disks and
utilizes the underlying LUKS devices for encryption since btrfs doesn't support this natively.

mkfs.btrfs --data raid1 --metadata raid1 --label btrpool /dev/mapper/cryptbtrpool_1 /dev/mapper/cryptbtrpool_2

Add to crypttab
It is best practice to reference drives in /etc/fstab or /etc/crypttab using something more constant
than just the dev name like /dev/sdX1 . I reference the drives by the UUID of the LUKS partition but
another good option is to reference the drives by their "disk-id" found under /dev/disk/by-id/... .

I can find the UUID for the LUKS partitions by using blkid and grep to filter the output.

Now with those UUIDs I can use them in /etc/crypttab to automatically open my LUKS partition
during boot.

Add to fstab
Entries in /etc/crypttab will all have completed by the time entries in /etc/fstab are attempted. So
knowing that the LUKS devices will have been automatically opened I can then mount that
filesystem as I would any other block device. Since the btrfs filesystem above was labeled btrpool it
is possible to mount subvolumes using a combination of that label and the names of any
subvolumes that were created.

blkid | grep LUKS
/dev/sdX1: UUID="99fc46af-1048-4c50-bc38-2085aee78579" TYPE="crypto_LUKS" PARTLABEL="Linux
filesystem" PARTUUID="8cbdf3b0-7ba0-4b7b-8639-15ea3029c72e"
/dev/sdY1: UUID="507033de-5eb5-4baf-8875-6595fbb260af" TYPE="crypto_LUKS" PARTLABEL="Linux
filesystem" PARTUUID="14d8331c-9a82-4e5d-8ea8-4d1a6d8025fe"

<target name> <source device> <key file> <options>
+ cryptbtrpool_1 UUID=507033de-5eb5-4baf-8875-6595fbb260af /etc/keyfile
+ cryptbtrpool_2 UUID=99fc46af-1048-4c50-bc38-2085aee78579 /etc/keyfile

/etc/fstab
<file system> <mount point> <type> <options> <dump> <pass>
+ LABEL=btrpool /storage/btrpool btrfs x-mount.mkdir=0755,defaults,subvol=@,compress=zstd 0 0
+ LABEL=btrpool /storage/btrpool/services btrfs defaults,subvol=@services,compress=zstd,X-
mount.mkdir=0755 0 0
+ LABEL=btrpool /storage/btrpool/media btrfs defaults,subvol=@media,compress=zstd,X-mount.mkdir=0755
0 0

Reboot
Really Force Reboot
I've had to do this when the ZFS kernel module has a problem that was preventing
shutdown/reboot commands from completing because they try and do so in a tidy way. For those
situations there is the following...

Then to reboot the machine simply enter the following:

When the "reboot" or "shutdown" commands are executed daemons are gracefully stopped
and storage volumes unmounted. This is usually accomplished via scripts in the /etc/init.d
directory which will wait for each daemon to shut down gracefully before proceeding on to
the next one. This is where a situation can develop where your Linux server fails to
shutdown cleanly leaving you unable to administer the system until it is inspected locally.
This is obviously not ideal so the answer is to force a reboot on the system where you can
guarantee that the system will power cycle and come back up. The method will not unmount
file systems nor sync delayed disk writes, so use this at your own discretion.

echo 1 > /proc/sys/kernel/sysrq

echo b > /proc/sysrq-trigger

Network Storage
iSCSI

Terminology/Concepts

Setup Host/Target
Install Linux target framework (tgt)

Create a new target. Be sure to replace the TARGET_NAME with an appropriate name. See iSCSI
Addressing

Internet Small Computer Systems Interface or iSCSI (/aɪˈskʌzi/ i eye-SKUZ-ee) is
an Internet Protocol-based storage networking standard for linking data storage
facilities. iSCSI provides block-level access to storage devices by carrying SCSI
commands over a TCP/IP network. iSCSI facilitates data transfers over intranets
and to manage storage over long distances. It can be used to transmit data over
local area networks (LANs), wide area networks (WANs), or the Internet and can
enable location-independent data storage and retrieval.

The protocol allows clients (called initiators) to send SCSI commands (CDBs) to
storage devices (targets) on remote servers. It is a storage area network (SAN)
protocol, allowing organizations to consolidate storage into storage arrays while
providing clients (such as database and web servers) with the illusion of locally
attached SCSI disks. It mainly competes with Fibre Channel, but unlike
traditional Fibre Channel which usually requires dedicated cabling, iSCSI can be
run over long distances using existing network infrastructure. iSCSI was
pioneered by IBM and Cisco in 1998 and submitted as a draft standard in March
2000.

source

“

apt install tgt
systemctl start tgt

https://en.wikipedia.org/wiki/ISCSI#Concepts
https://en.wikipedia.org/wiki/ISCSI#Addressing
https://en.wikipedia.org/wiki/ISCSI#Addressing
https://en.wikipedia.org/wiki/ISCSI

Setup Initiator
tbd

TARGET_NAME=iqn.2023-09.home.mini-tgt-1
cat <<EOF > /etc/tgt/conf.d/$TARGET_NAME.conf
<target $TARGET_NAME>
 direct-store /dev/disk/by-id/ata-some-disk-1
 direct-store /dev/disk/by-id/ata-some-disk-2
 initiator-address 172.16.4.2
</target>
EOF

