
Linux Unified Key Setup
(LUKS)

Prepare Disks

[Source](https://wiki.archlinux.org/title/Dm-crypt/Drive_preparation)
There are multiple ways to prepare a disk and some other potentially better ones listed on the
page linked to above. Because I want to wipe my disks as quickly as possible and they were both
the same size I am using a slightly more complicated method. This method creates the equivalent
of filling the disks with the output from /dev/urandom but does so faster by using the output of
encrypting /dev/zero and writing that to the disks instead. I save even more time by using tee and
process substitution to redirect the output to both drives at once. Just for good measure I am using
pv to measure the speed at which I am writing and to track my progress.

Partition

I messed up editing this page and some of the information is missing and in the wrong order.

All the examples below assume wanting to setup a btrfs pool on two disks `/dev/sdX` and
`/dev/sdY` that will be used just for additional storage.

Before encrypting a drive, it is recommended to perform a secure erase of the
disk by overwriting the entire drive with random data. To prevent cryptographic
attacks or unwanted file recovery, this data is ideally indistinguishable from data
later written by dm-crypt.

“

PASS=$(tr -cd '[:alnum:]' < /dev/urandom | head -c128)
openssl enc -aes-256-ctr -pass pass:"$PASS" -nosalt < /dev/zero | dd ibs=4K | pv | tee >(dd obs=64K
oflag=direct of=/dev/sdX) | dd obs=64K oflag=direct of=/dev/sdY

Although LUKS can be layered on top of redundant storage (btrfs -or- mdadm + dm-integrity) for
my usages it almost always makes sense to layer those things on top of LUKS instead. My goal is
just to have an encrypted filesystem for storage of data so I only need to create one partition on
each disk.

Encrypt
Setup LUKS with passphrase encrypted drives.

Create encryption key.

Add keyfile as optional decryption key.

Unlock Devices

Create btrfs Pool

sgdisk --clear --new=0:0:0 /dev/sdX
sgdisk --clear --new=0:0:0 /dev/sdY

cryptsetup luksFormat /dev/sdX1 cryptbtrpool_1
cryptsetup luksFormat /dev/sdY1 cryptbtrpool_2

dd if=/dev/urandom bs=512 count=4 of=/etc/keyfile

cryptsetup luksAddKey /dev/sdX1 /etc/keyfile
cryptsetup luksAddKey /dev/sdY1 /etc/keyfile

cryptsetup open /dev/sdX1 cryptbtrpool_1 --key-file=/etc/keyfile
cryptsetup open /dev/sdY1 cryptbtrpool_2 --key-file=/etc/keyfile

You can use LUKS devices like any other block device and format them any way you want.
However below I am combining them into a RAID1 btrfs filesystem that spans both disks and
utilizes the underlying LUKS devices for encryption since btrfs doesn't support this natively.

mkfs.btrfs --data raid1 --metadata raid1 --label btrpool /dev/mapper/cryptbtrpool_1 /dev/mapper/cryptbtrpool_2

Add to crypttab
It is best practice to reference drives in /etc/fstab or /etc/crypttab using something more constant
than just the dev name like /dev/sdX1 . I reference the drives by the UUID of the LUKS partition but
another good option is to reference the drives by their "disk-id" found under /dev/disk/by-id/... .

I can find the UUID for the LUKS partitions by using blkid and grep to filter the output.

Now with those UUIDs I can use them in /etc/crypttab to automatically open my LUKS partition
during boot.

Add to fstab
Entries in /etc/crypttab will all have completed by the time entries in /etc/fstab are attempted. So
knowing that the LUKS devices will have been automatically opened I can then mount that
filesystem as I would any other block device. Since the btrfs filesystem above was labeled btrpool it
is possible to mount subvolumes using a combination of that label and the names of any
subvolumes that were created.

blkid | grep LUKS
/dev/sdX1: UUID="99fc46af-1048-4c50-bc38-2085aee78579" TYPE="crypto_LUKS" PARTLABEL="Linux
filesystem" PARTUUID="8cbdf3b0-7ba0-4b7b-8639-15ea3029c72e"
/dev/sdY1: UUID="507033de-5eb5-4baf-8875-6595fbb260af" TYPE="crypto_LUKS" PARTLABEL="Linux
filesystem" PARTUUID="14d8331c-9a82-4e5d-8ea8-4d1a6d8025fe"

<target name> <source device> <key file> <options>
+ cryptbtrpool_1 UUID=507033de-5eb5-4baf-8875-6595fbb260af /etc/keyfile
+ cryptbtrpool_2 UUID=99fc46af-1048-4c50-bc38-2085aee78579 /etc/keyfile

/etc/fstab
<file system> <mount point> <type> <options> <dump> <pass>
+ LABEL=btrpool /storage/btrpool btrfs x-mount.mkdir=0755,defaults,subvol=@,compress=zstd 0 0
+ LABEL=btrpool /storage/btrpool/services btrfs defaults,subvol=@services,compress=zstd,X-
mount.mkdir=0755 0 0
+ LABEL=btrpool /storage/btrpool/media btrfs defaults,subvol=@media,compress=zstd,X-mount.mkdir=0755
0 0

Revision #6
Created 20 October 2021 16:37:38 by dustin@swigg.net
Updated 9 January 2023 03:11:20 by dustin@swigg.net

