
PCI Passthrough

Ensure IOMMU Is Activated

Ensure Kernel Modules
Debian

Bind vfio-pci Driver to Devices
Now you can bind the vfio-pci driver to your devices at startup so they can be passed through to a
VM. There are two ways of doing this, the first way is quick and easy but forces you to blacklist an
entire driver which would stop you from being able to use that driver for another device that you
aren't passing through. The second way is a little more complciated but allows you to target
individual devices without blacklisting an entire driver.

1) Blacklist Drivers

First step of this process is to make sure that your hardware is even capable of
this type of virtualization. You need to have a motherboard, CPU, and BIOS that
has an IOMMU controller and supports Intel-VT-x and Intel-VT-d or AMD-v and
AMD-vi. Some motherboards use different terminology for these, for example
they may list AMD-v as SVM and AMD-vi as IOMMU controller.

“

/etc/modules
/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.
+ vfio_pci
+ vfio
+ vfio_iommu_type1
+ vfio_virqfd

By running lspci -knn you can easily find out which drivers are being used for a device so you know
what driver to blacklist in addition to their <vendor>:<device> identifier. Armed with both of these
we can blacklist the drivers we don't want being used and let the vfio-pci driver know which
device(s) to bind to.

Below is an example of blacklisting the driver i915 (Intel iGPU driver) so I can pass through my
iGPU to a virtual machine. The driver is blacklisted so it won't load and the device identified by
<vendor>:<device> is added as a parameter to the vfio-pci driver so it knows which device to bind
with.

2) Alias Devices

Using lspci -knn it is easy to find a devices B/D/F identifier and its <vendor>:<device> identifier.
Then we can find its modalias by running cat /sys/bus/pci/devices/<B/D/F>/modalias . Armed with both of
these we can let the vfio-pci module know which devices to bind to.

Rebuild initramfs
Debian

Update Bootloader
Update Kernel Parameters
Grub2

/etc/modprobe.d/blacklist.conf
+ blacklist i915

/etc/modprobe.d/vfio.conf
+ options vfio-pci ids=8086:3e92 disable_vga=1

/etc/modprobe.d/vfio.conf
+ # Intel UHD 630 (8086:3e92)
+ alias pci:v00008086d00003E92sv00001458sd0000D000bc03sc80i00 vfio-pci
+
+ options vfio-pci ids=8086:3e92 disable_vga=1

update-initramfs -u

https://en.wikipedia.org/wiki/PCI_configuration_space#Bus_enumeration

Systemd

Rebuild Bootloader Options
Grub

systemd-boot

Proxmox

/etc/default/grub
- GRUB_CMDLINE_LINUX_DEFAULT="quiet"
+ GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=igfx_off iommu=pt video=efifb:off"

/etc/kernel/cmdline
- root=ZFS=rpool/ROOT/pve-1 boot=zfs
+ root=ZFS=rpool/ROOT/pve-1 boot=zfs intel_iommu=igfx_off iommu=pt video=efifb:off

update-grub

bootctl update

pve-efiboot-tool refresh

Revision #5
Created 22 April 2020 11:16:55 by Dustin Sweigart
Updated 2 April 2021 14:03:54 by dustin@swigg.net

