
IPv4
Firewall Setup
DHCP and DNS Cache

Firewall Setup
Install Shorewall
To manage nftables/iptables I decided to go with Shorewall since it is easy to configure and very
mature. At some point I may look into switching to FireHol since it looks even simpler to configure
but I wanted something I knew I'd be able to make do everything I needed.

I started by installing shorewall as my firewall, shorewall-doc which includes examples, and
shorewall-init which can lockdown the system at boot before Shorewall has had a chance to
configure the firewall.

Then I update the shorewall configuration to reflect that I'm using ulogd2 for logging and that I
want IPv4 forwarding enabled when shorewall starts.

All my configuration files are adapted from the examples that shorewall-doc makes available under
/usr/share/doc/shorewall/examples .

Setting up the zones is pretty self-explanitory. The only addition I made is I have a warp zone
which I will use later when I am setting up my VPN.

apt install shorewall shorewall-doc shorewall-init

/etc/shorewall/shorewall.conf
- LOG_LEVEL="info"
+ LOG_LEVEL="NFLOG(1,0,1)"
...
- LOGFILE=/var/log/messages
+ LOGFILE=/var/log/firewall.log
...
- IP_FORWARDING=Keep
+ IP_FORWARDING=Yes

/etc/shorewall/zones
+ #--
+ # For information about entries in this file, type "man shorewall-zones"
+ #

https://shorewall.org/
https://firehol.org/

Setting up the interfaces and assiging them zones is also pretty self-explanatory.

My real /etc/shorewall/policy file is less liberal than what is shown below (lan being allowed to access
whatever it wants) but I wanted to show a reasonably secure policy that allowed me to have a very
simple /etc/shorewall/rules config below.

+ # See http://shorewall.net/manpages/shorewall-zones.html for more information
+
###
############
+ #ZONE TYPE OPTIONS IN OUT
+ # OPTIONS OPTIONS
+ fw firewall
+ wan ipv4
+ lan ipv4
+ dmz ipv4
+ warp ipv4

/etc/shorewall/interfaces
+ #--
+ # For information about entries in this file, type "man shorewall-interfaces"
+ #
+ # See http://shorewall.net/manpages/shorewall-interfaces.html for more information
+
###
############
+ ?FORMAT 2
+
###
############
+ #ZONE		INTERFACE OPTIONS
+ wan		WAN_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,sourceroute=0,physical=eth0
+ lan		LAN_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,physical=eth1
+ dmz		DMZ_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,physical=eth1.8
+ warp		WARP_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,physical=eth1.9

/etc/shorewall/policy
+ #--
+ # For information about entries in this file, type "man shorewall-policy"
+ #
+ # See http://shorewall.net/manpages/shorewall-policy.html for more information

Because my example policy is pretty open, my rules in this example are pretty sparse.

+
###
############
+ #SOURCE	DEST		POLICY		LOGLEVEL	RATE CONNLIMIT
+
+ $FW		all			ACCEPT
+ lan		all			ACCEPT
+ dmz		$FW,wan		ACCEPT
+ warp		$FW			ACCEPT
+
+ wan		all			DROP		$LOG_LEVEL
+ # THE FOLLOWING POLICY MUST BE LAST
+ all		all			REJECT		$LOG_LEVEL

/etc/shorewall/rules
+ #--
+ # For information about entries in this file, type "man shorewall-rules"
+ #
+ # See http://shorewall.net/manpages/shorewall-rules.html for more information
+
###
###
##
+ #ACTION SOURCE DEST PROTO DEST SOURCE ORIGINAL RATE USER/
MARK CONNLIMIT TIME HEADERS SWITCH HELPER
+ # PORT PORT(S) DEST LIMIT GROUP
+ ?SECTION ALL
+ ?SECTION ESTABLISHED
+ ?SECTION RELATED
+ ?SECTION INVALID
+ ?SECTION UNTRACKED
+ ?SECTION NEW
+
+ # Don't allow connection pickup from the net
+ Invalid(DROP) wan all tcp
+
+ DNS(ACCEPT) all!wan,warp $FW
+ DNS(ACCEPT) $FW,dmz lan:10.0.1.2

Lastly is the magic that allows private addresses to access the Internet by masquerading them all
as my one public IPv4 address I am assigned. The following just says all traffic heading out of
WAN_IF (eth0) coming from a private IP range should be masqueraded.

Now that I have everything configured it might be wise to run shorewall check just to make sure I
didn't have any typos.

I hooked shorewall into the boot process to make sure the system is secure during boot by
enabling shorewall-init.service and shorewall.service. First I told shorewall-init that it needs to
account for shorewall when it runs.

Then I simply told those services to start at boot.

+
+ Web(ACCEPT) dmz $FW
+ Web(DNAT) wan dmz:10.0.8.2

/etc/shorewall/snat
+ #--
+ # For information about entries in this file, type "man shorewall-snat"
+ #
+ # See http://shorewall.net/manpages/shorewall-snat.html for more information
+
###
###
#####
+ #ACTION SOURCE DEST PROTO PORT IPSEC MARK USER
SWITCHORIGDEST PROBABILITY
+ MASQUERADE 10.0.0.0/8,\
+ 169.254.0.0/16,\
+ 172.16.0.0/12,\
+ 192.168.0.0/16 WAN_IF

/etc/default/shorewall-init
- PRODUCTS=""
+ PRODUCTS="shorewall"

systemctl enable shorewall
systemctl enable shorewall-init

https://en.wikipedia.org/wiki/Network_address_translation

Modify Interfaces
Now that Shorewall will secure everything at bootup it is safe to update /etc/networking/interfaces and
add their IPv4 addresses.

Now if I reboot the system all my interfaces will come up configured and the system will be
protected by nftables/iptables configured by Shorewall.

/etc/networking/interfaces
 auto eth1
- iface eth1 inet manual
+ iface eth1 inet static
+ address 10.0.1.1/21

 auto eth1.8
- iface eth1.8 inet manual
+ iface eth1.8 inet static
 vlan-raw-device eth1
+ address 10.0.8.1/24

 auto eth1.9
- iface eth1.9 inet manual
+ iface eth1.9 inet static
 vlan-raw-device eth1
+ address 10.0.9.1/24

Be sure to sanity check the configuration so Shorewall doesn't block SSH access if that is
needed.

reboot

DHCP and DNS Cache
Install dnsmasq
I decided to use dnsmasq since it can fulfull multiple roles as both a DHCP and DNS cache. I'll first
configure it for IPv4 and then later add in the few extra IPv6 lines needed.

Setup DHCP
The following can look complicated but that is just becuase there are a ton of MAC Addresses and
IP Addresses mixed throughout. If you look closely you can see that there are only four types of
lines.

1. no-dhcp-interface=eth0,lo prevents DHCP binding on our loopback address and eth0 which is
the interface facing the Internet.

2. dhcp-range= declares a start and stop address and lease lifetime for each subnet. I am
also setting an optional tag for each so I can target them later if I want.

3. dhcp-option= allows me to set specific DHCP options. The tag: allows me to target
addresses matching a specific tag. I am overriding the default DNS servers because I want
lan and dmz to use my Pi-hole server and warp should use a public DNS server since any
device on that subnet is routed through a VPN tunnel so it doesn't have local network
access.

4. dhcp-host= defines what IP addresses and hostnames get assigned to which network
device with a specific MAC address

/etc/dnsmasq.d/dhcp.conf
+ no-dhcp-interface=eth0,lo
+
+ dhcp-range=set:lan,10.0.5.1,10.0.7.254,12h
+ dhcp-range=set:dmz,10.0.8.1,10.0.8.254,12h
+ dhcp-range=set:warp,10.0.9.1,10.0.9.254,5m
+
+ dhcp-option=tag:lan,option:dns-server,10.0.1.2
+ dhcp-option=tag:lan,option:dns-server,10.0.1.2
+ dhcp-option=tag:warp,option:dns-server,1.1.1.1,1.0.0.1
+

https://thekelleys.org.uk/dnsmasq/doc.html
https://en.wikipedia.org/wiki/MAC_address
https://en.wikipedia.org/wiki/IP_address

Setup DNS Caching
Everything here is commented with an explanation of what it does. The only thing slightly
interesting is I have two server= parameters pointing to the IPv4 loopback addresses which is
where Unbound is listening. If Unbound wasn't being used I'd either remove no-resolv and use the
system namesevers or change the server= parameters to point to a public recursive name sever.

+ # LAN - network infrastructure
+ dhcp-host=aa:af:57:f3:4e:90,10.0.1.2,pihole			# pihole
+ dhcp-host=b4:fb:e4:8f:f9:74,10.0.1.3,unifi-switch-8	# unifi-switch-8
+
+ # LAN - proxmox
+ dhcp-host=e0:d5:5e:63:fe:30,10.0.3.2,blackbox			# blackbox
+ dhcp-host=70:85:c2:fe:4c:b7,10.0.3.3,mini				# mini
+ dhcp-host=6e:91:84:4a:74:f1,10.0.3.4,backup			# backup
+
+ # LAN - assigned devices
+ dhcp-host=d0:a6:37:ed:8c:7f,10.0.4.4,silverbook		# silverbook
+ dhcp-host=82:13:00:9c:c7:00,10.0.4.5,thunderbolt		# thunderbolt
+ dhcp-host=34:36:3b:7f:18:1e,10.0.4.8,jess				# jess
+ dhcp-host=96:64:5F:1C:A6:2C,10.0.5.6,refuge			# refuge
+ dhcp-host=7A:BC:46:D1:A3:1B,10.0.5.9,unifi			# unifi
+
+ # DMZ - assigned devices
+ dhcp-host=62:59:92:A7:1D:F1,10.0.8.5,bitcoin			# bitcoin
+ dhcp-host=32:cc:fb:a3:1a:57,10.0.8.2,contained		# contained

/etc/dnsmasq.d/dns.conf
+ # Add the domain to simple names (without a period) in /etc/hosts in the same way as for DHCP-derived
names.
+ expand-hosts
+
+ # Log the results of DNS queries handled by dnsmasq.
+ log-queries
+
+ # Do not listen on the specified interface.
+ except-interface=eth0,lo
+
+ # Accept DNS queries only from hosts whose address is on a local subnet, ie a subnet for which an interface

https://en.wikipedia.org/wiki/Public_recursive_name_server

exists on the server.
+ local-service
+
+ # Dnsmasq binds the address of individual interfaces, allowing multiple dnsmasq instances, but if new
interfaces or addresses appear, it automatically listens on those
+ bind-dynamic
+
+ # Return answers to DNS queries from /etc/hosts and --interface-name which depend on the interface over
which the query was received.
+ localise-queries
+
+ # All reverse lookups for private IP ranges (ie 192.168.x.x, etc) which are not found in /etc/hosts or the DHCP
leases file are answered with "no such domain"
+ bogus-priv
+
+ # Later versions of windows make periodic DNS requests which don't get sensible answers from the public
DNS and can cause problems by triggering dial-on-demand links.
+ filterwin2k
+
+ # Enable code to detect DNS forwarding loops
+ dns-loop-detect
+
+ # Reject (and log) addresses from upstream nameservers which are in the private ranges.
+ stop-dns-rebind
+
+ # Exempt 127.0.0.0/8 and ::1 from rebinding checks.
+ rebind-localhost-ok
+
+ # Tells dnsmasq to never forward A or AAAA queries for plain names, without dots or domain parts, to
upstream nameservers.
+ domain-needed
+
+ # Specifies DNS domains for the DHCP server.
+ domain=hermz.io
+
+ # Don't read /etc/resolv.conf. Get upstream servers only from the command line or the dnsmasq configuration
file.
+ no-resolv
+
+ server=127.0.0.1

Resolve Static Clients
One problem I ran into was that static clients never use DHCP so the DHCP server doesn't register
their hostname with their intended IP address. To work around this limitation I just added those
entries to the /etc/hosts file since by default dnsmasq will resolve using those entries too.

Reboot
Now that dnsmasq is fully configured I just restart it using systemctl

+ server=::1

/etc/hosts
+ 10.0.1.1 ember
+ 10.0.1.2 pihol
+ 10.0.1.3 unifi-switch-8
+ 10.0.3.2 blackbox
+ 10.0.3.3 mini
+ 10.0.3.4 backup
+ 10.0.3.5 edge

 # --- BEGIN PVE ---

systemctl restart dnsmasq.service

