
Virtual Private
Networking

Wireguard
Route Subnet Through Wireguard Interface
Remote Access

Wireguard
I had two goals I wanted to accomplish with VPNs.

1. I need to redirect all outbound traffic from a specific subnet through a VPN so any client
on that subnet would have its privacy protected by the VPN.

2. Allow me to VPN into my home network from somehwere else and have access to
everything as if I was sitting on my computer at home.

Both of them could have been accomlished with any VPN most likely but I went with WireGuard
since it is a simple and fast VPN whose setup is similar to SSH so it was inuitive for me to setup.

Host Setup
To use Wireguard inside of a LXC container the host has to have Wireguard installed since LXC
guests are run with the kernel of the host system. Wireguard was first mainlined into the Linux
kernel in version 5.6 so with kernel versions using 5.6 or later it is already built in. Anything before
5.6 that doesn't specifically have Wireguard backported in will need to use kernel modules to get it
working. Wireguard.com has detailed instructions on how to install it on nearly any platform. Since I
am using Proxmox as my host it was already backported into the kernel.

Guest Setup
Additionally I needed the wireguard-tools package in the LXC guest and resolvconf so DNS can be
configured properly.

echo "deb http://deb.debian.org/debian buster-backports main" > /etc/apt/sources.list.d/buster-backports.list
apt update
apt install --no-install-recommends wireguard-tools
apt install resolvconf

https://bookstack.swigg.net/books/networking/page/wireguard
https://www.wireguard.com/install/

Route Subnet Through
Wireguard Interface
Funneling all traffic from an Ethernet interface through a Wireguard interface is relatively easy
once I became familar with how packets flow through Linux. I mostly just needed to modify my
Wireguard *.conf file to add the Table , PostUp , and PreDown parameters.

Create Interface
Creating the configuration file is a bit out of the scope of this document. A VPN provider that
supports Wireguard will likely just provide a pre-built configuration file. But I also have a brief
overview of how you'd make one.

Line 5: All rules/routes should be applied to a custom route table 9 . I could have also named my
custom route table by running echo "9 warp" > /etc/iproute2/rt_tables and then say Table = warp for
improved readability.

I also needed to setup IP masquerading of outgoing traffic on my Wireguard interface. See
below for instructions.

/etc/wireguard/warp.conf
[Interface]
PrivateKey = ****
Address = 10.10.20.59/19, 2a03:4012:4021:80af::1f3c/64
DNS = 10.10.0.1, 2a03:4012:4021:80af::1
Table = 9
PostUp = ip rule add iif eth1.9 lookup 9; ip -6 rule add iif eth1.9 lookup 9
PreDown = ip rule del iif eth1.9 lookup 9; ip -6 rule del iif eth1.9 lookup 9

[Peer]
PublicKey = T28Qn5VFzT4wiwEPd7DscwcP3Rsmq23QcnjH1N5G/wc=
Endpoint = wireguard.vpn-provider.example:51820
AllowedIPs = 0.0.0.0/0, ::0/0...

https://bookstack.swigg.net/books/networking/page/wireguard
https://bookstack.swigg.net/books/networking/page/wireguard

Line 6: Adds rules for IPv4 and IPv6 that all traffic coming in interface eth1.9 should use custom
route table 9 . Because I defined a peer with AllowedIPs = 0.0.0.0/0, ::0/0 a default route will be setup
on custom route table 9 that redirects all traffic to the Wireguard interface. If I named my custom
route like shown above I could have said lookup warp inplace of lookup 9 .

Line 7: Just the inverse of line 5 to clean up after myself when taking down the Wireguard
interface.

Setup IP Masquerading

Source: Wikipedia

Configuration
The easiest way to set this up are to append some netfilter rules to the PostUp and PreDown
parameters.

Although this works fine there is a risk of the iptables/netfilter rules getting squashed by Shorewall
if it is restarted while the Wireguard interface exists. It is best to have Shorewall setup the
masquerading by making a simple declaration in /etc/shorewall/snat . I've included the other
Shorewall configuration files that would be necessary to make this setup work.

First I define the wg zone…

IP Masquerading is a technique that hides an entire IP address space, usually
consisting of private IP addresses, behind a single IP address in another, usually
public address space.

“

...
PostUp = ...; iptables -t nat -A POSTROUTING -o wg0 -j MASQUERADE
PreDown = ...; iptables -t nat -D POSTROUTING -o wg0 -j MASQUERADE

[Peer]
...

/etc/shorewall/zones
 #ZONE TYPE OPTIONS IN OUT
 # OPTIONS OPTIONS

https://en.wikipedia.org/wiki/Network_address_translation

Then I define the interface WG_IF and put it in the wg zone…

This tells Shorwall to masquerade all IPs going out on WG_IF …

Then I allow the warp zone to send packets to the wg zone. The warp zone isn't allowed to send
packets to any other subnet or the wan . This prevents any data/privacy spills from happening if
the Wireguard interface ever goes down. It is always best to fail into a state that protects security
and privacy.

 warp ipv4
+ wg ipv4

/etc/shorewall/interfaces
 #ZONE	INTERFACE	OPTIONS
 warp	WARP_IF		tcpflags,nosmurfs,routefilter=2,logmartians,physical=eth1.9
+ wg	WG_IF		physical=wg0

/etc/shorewall/snat
 #ACTION		SOURCE		DEST
+ MASQUERADE	0.0.0.0/0	WG_IF

/etc/shorewall/policy
 #SOURCE	DEST		POLICY LOGLEVEL RATE CONNLIMIT
- warp		$FW			ACCEPT $LOG_LEVEL
+ warp		$FW,wg		ACCEPT $LOG_LEVEL

Remote Access
Allowing remote access is just a matter of setting up a new Wireguard interface, allowing incoming
traffic to that interface, and making sure the firewall allows that traffic to connect to the rest of the
network.

Create Interface

Then I modified my file to finish configuring the interface and allow a [Peer] for my laptop.

Line 4: Sets an IPv4 and IPv6 address for this interface. These will be the servers IPs on each
virtual subnet.

Line 5: Sets the port to listen to for this interface. It is just the default Wirgaurd port and I'll allow
traffic through the firewall for it soon.

Line 7-10: Declare a peer, define the public key to use when communicating and validaing any
connections, set what IPs the peer is allowed to use on each virtual subnet, and configure a pre-
shared key for additional secuirty.

cd /etc/wireguard
umask 077
wg genkey | tee guard.key | wg pubkey > guard.pub
printf "[Interface]\PrivateKey = %s\n" `cat guard.key`

/etc/wireguard/guard.conf
[Interface]
PrivateKey = ****
+ Address = 10.0.2.1/28, 2001:db8:2ebf:2::1/64
+ ListenPort = 51820
+
+ [Peer]
+ PublicKey = Iz5ceR0+tCN3BLTWehZxSplzdbABRT8geqifFxubHUA=
+ AllowedIPs = 10.0.2.4/32, 2001:db8:2ebf:1::4/128
+ PresharedKey = ***

Firewall Configuration
First I had to declare a new interface and since I want it to be as if I was sitting on my laptop at
home, I put it in the lan zone.

For outside clients to connect I need to add a rule that allows them to connect to the firewall on
port 51820.

The last step is to once again setup masquerading so traffic from clients on the Wireguard subnet
appear to be originating from the wgguard interface which is in the lan zone.

A preshard key can be generated by running wg genpsk and must be the same on both the
[Peer] block on the server and the [Interface] block on the client.

/etc/shorewall/interfaces
...
 #ZONE	INTERFACE	OPTIONS
...
 wg	WGAZSE1_IF	tcpflags,nosmurfs,routefilter,logmartians,physical=wgazse1
+ lan	WGGUARD_IF	tcpflags,nosmurfs,routefilter,logmartians,physical=wgguard

/etc/shorewall/interfaces
...
 #ZONE	INTERFACE	OPTIONS
...
 wg	WGAZSE1_IF	tcpflags,nosmurfs,routefilter,logmartians,physical=wgazse1
+ lan	WGGUARD_IF	tcpflags,forward=1,physical=wgguard

/etc/shorewall[6]/rules
+ ACCEPT wan,lan $FW udp 51820

/etc/shorewall/snat
+ MASQUERADE		10.0.2.0/28				WAN_IF,LAN_IF,DMZ_IF

/etc/shorewall6/snat
+ MASQUERADE		fde9:2375:2ebf:2::/64	WAN_IF,LAN_IF,DMZ_IF

