
Project Router
Introduction: Novice to Network Admin
LXC Guest Setup
Initial Network Setup
DNS: Recursive DNS
Logging in LXC
IPv4

Firewall Setup
DHCP and DNS Cache

IPv6

IPv6 Intro
Firewall Setup
Prefix Delegation
DHCP and SLAAC

Virtual Private Networking

Wireguard
Route Subnet Through Wireguard Interface
Remote Access

Bonded Interface
Network Intrusion Detection
Traffic Graphing/Monitoring

Introduction: Novice to
Network Admin
Introduction
If you're just looking to get started reading about how I setup everything you can skip down to the
Goals section or go straight to Guest Setup to get started.

Background
From when I first started using computers as a kid I treated all things related to networking as a
black box. I had a rudimentary understanding of IP addresses but had no real idea how data got
from my computer to a server other than the high level concept of "my computer is sending data to
that address". It is similar to how most of us don't really know how the US Postal Service works. We
have a vague notion that we drop a letter in a mailbox to be picked up and then "my letter gets
delivered to the address on the envelope." In reality how mail gets picked up, sorted, tracked,
bundled, routed, and delivered is much more involved than we ever think about. Up until about
three years ago my knowledge hadn't progressed much past knowing network packets existed and
for a computer to get on the Internet it had to have an IP address, a subnet mask (not that I really
understood what this was), and have a router address.

Like most computer users I never delved into networking. I'd plug my router (always an Apple
AirPort into the modem and go with mostly the defaults. I used Linux for years but strictly as a
server for web apps I programmed and never ventured very far off that path.

That all started to change in 2018 when I decided to build a server (really just a fast PC at the time)
to play around with. It also coincided with me starting a new job that put me adjacent to some
networking topics that started to peak my interest. Pretty soon I was self hosting a several
applications accessible from the Internet and wanted to take the plunge into setting up a DMZ to
try and keep my local network safe from the ever increasing number of things I was making
publically accessible. Looking into how best to cordon off my applications I saw that putting public
applications on a different subnet and often a VLAN is the best practice. But my AirPort didn't
support that so I went searching for a router/firewall that would work better. The general consensus
at the time seemed to be to use a

https://bookstack.swigg.net/books/project-router/page/guest-setup
https://en.wikipedia.org/wiki/Network_packet
https://en.wikipedia.org/wiki/AirPort
https://en.wikipedia.org/wiki/AirPort
https://en.wikipedia.org/wiki/DMZ_%28computing%29
https://en.wikipedia.org/wiki/Virtual_LAN

Unifi Security Gateway or run pfSense on an old PC. Not having a PC to run it on I first tried
virtualizing my router by running it as a virtual machine on my "server." For a newbie this was
more complicated than necessary and had the risk that if not done correctly could expose my
internal network to the Internet. I liked pfSense but I quickly found out the downside of running
your gateway to the Internet on your server is that when your server has a problem you likely
won't have the Internet to fix it which is quite frustrating.

So I bought a mini PC (Protecli Vault) and started running pfSense on there and was happy for a
year. I continued to self-host more applications and eventually got to self-hosting DNS with Pi-hole.
Pretty soon I ran into my old problem of when the server is down there is no DNS and so the
Internet pretty much stops working. I briefly considered buying buyin a Raspberry Pi which would
have been a great solution but I decided to treat the mini PC as my "network infrastructure server"
and instead of just running pfSense on there I'd use Proxmox VE and virtualize both pfSense and Pi-
hole the same way I had been virtualizing Pi-hole on my server.

This worked great except I eventually noticed that my maximum download speeds were slower
than they had been when only pfSense was running on the min PC. After a bunch of testing and
attempted workarounds I realized I needed wanted a new plan. So once again I bought a mini PC
that was pretty much just a more powerful version of the one I already had to try and fix the
problem. I was disappointed to see that my upgrade helped but wasn't enough to overcome the
overhead that came along with virutalizing pfSense. Additionally I was starting to push into things
that pfSense didn't support yet like using Wireguard.

The next step was to investigate if a Linux based firewall would perform better while virtualized.
The answer turns out to be no since both pfSense and Linux both implement Virtio network drivers
that work very similarly and the real problem seems to just be the result of the additional layers a
packet has to travel up through. Each packet coming in must be processed by the hypervisor
kernel then redirected to the virtualized router kernel and if the packet was destined somewhere
else had to go through the same layers in reverse to exit. That seems to be jus too much for a
device with modest CPU and memory performance.

Then it dawned on me that I could get around those layers of virtualization by using the same
containerization I had been using for servers I had virtualized to run all my self-hosted projects. I
prefer to run my guest machines as LXC (Linux Container) guests instead of virtual machines. A
LXC guest uses the same Linux Kernel as the host Operating System so there are no additional
layers of virtualization overhead to deal with. Pretty neat!

When I was looking at Linux based firewalls I came across VyOS which is based on Debian Linux
and allowed me to peek behind the curtain of the types of tools you use for a Linux firewall. The
seed of an idea had been planted that would use all the knowledge I gained over the last 3 years
tinkering with my home network-- Linux, Proxmox, Wireguard, and virtualization.

https://www.ui.com/unifi-routing/usg/
https://www.pfsense.org/
https://protectli.com/vault-2-port/
https://pi-hole.net/
https://www.raspberrypi.org/
https://www.proxmox.com/en/proxmox-ve
https://bookstack.swigg.net/books/linux/page/bridge-zero-copy-transmit
https://bookstack.swigg.net/books/edge/page/physical-hardware
https://www.wireguard.com/
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/Kernel_(computing)
https://vyos.io
https://www.debian.org/

I could run a LXC guest with Debian that would have zero virtualization overhead and provide all
the functionality I needed. Best of all I'd be able to customize the firewall/router because it is just a
Linux machine!

So I made a list of features I had been using on pfSense and VyOS to see what I'd have to
implement.

Goals
Basic Linux install in LXC guest
Firewall protection of my local network from the Internet
VLAN separation for added isolation between my subnets and the Internet
DHCP to provide each subnet with IPv4 address assignment and local DNS resolution
Recursive DNS for added security, privacy and removing reliance on external entities
IPv6 stack support (DHCPv6, Router Advertisements (NDP), Prefix Delegation)
Wireguard support

Extras
Create bonded Ethernet interface to remove bandwidth bottleneck between router and
switch
Add intrusion prevension system like Snort
Add bandwidth monitor and graphing

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Public_recursive_name_server
https://en.wikipedia.org/wiki/Public_recursive_name_server
https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol
https://en.wikipedia.org/wiki/Prefix_delegation
https://www.snort.org/

LXC Guest Setup
As I discussed in Introduction: Novice to Network Admin the goal is to run a router/firewall inside a
LXC guest so there is little to no overhead when routing packets. So I created an unpriviledged
LXC guest with a Debian 10 template.

Resources
The mini PC this will run on isn't a powerhouse but should provide more than enough resources and
have a few spare cycles leftover for something useful like running Pi-hole.

Cores unlimited (4 cores)

Memory 2048 MiB

Swap 512 MiB

Root Disk 2 GB

Networking
Device ID Name

physical net0 eth0

virtio net1 eth1

Because there is some overhead with using an Ethernet Bridge I only wanted to use one where it
made the most sense. Since the Ethernet connection from the modem will only ever talk directly to
this LXC guest I am "passing" one of the physical Ethernet interfaces from Proxmox to this LXC
guest. This makes it unavailable to the host and allows the LXC guest direct access to it similar to
how PCI(e) Passthrough would work on a virtual machine.

This can be accomplished with Proxmox/LXC configuration similar to what is shown below.

/etc/pve/lxc/100.conf
net1: name=eth1,bridge=vmbr0,hwaddr=D6:A9:67:D5:66:22,type=veth

https://bookstack.swigg.net/books/project-router/page/introduction-novice-to-network-admin
https://bookstack.swigg.net/books/edge
https://en.wikipedia.org/wiki/Bridging_(networking)
https://pve.proxmox.com/wiki/PCI(e)_Passthrough

Operating System
I didn't have to do much to the system itself other than making sure the timezone was correct and
that it was up to date.

+ lxc.net.0.type: phys
+ lxc.net.0.link: enp1s0
+ lxc.net.0.name: eth0

Be careful to not reuse the same index for `lxc.net.[index]` and `net[index]` values or the
guest will fail to boot.

$ dpkg-reconfigure tzdata
$ apt update
$ apt upgrade

Initial Network Setup
Configure Interfaces
I need Internet access to download all the packages necessary so I setup DHCP on the WAN
connection eth0 .

Then I restart the networking service to apply the changes and create the new interfaces.

Initial Security
I won't have SSH access allowed from the Internet when I am done but in the interim I want to
install fail2ban . It doesn't hurt to have running even once the firewall is fully setup and provides
just one more layer of defense.

Setting all the local network interfaces to `manual` and not providing any addresses
prevents any accidental routing before everything is secured.

/etc/network/interfaces
 auto eth0
 iface eth0 inet dhcp
+
+ auto eth1
+ iface eth1 inet manual
+
+ auto eth1.8
+ iface eth1.8 inet manual
+ vlan-raw-device eth1
+
+ auto eth1.9
+ iface eth1.9 inet manual
+ vlan-raw-device eth1

$ systemctl restart networking

$ apt install fail2ban

DNS: Recursive DNS
Option 1: Unbound

Recursive DNS can sometimes sacrifice speed for security so the unbound server is going to be
limited to only serve DNS requests from loopback addresses. Everyone else will have to go through
a DNS caching server (dnsmasq) that I'll setup later to perform DNS queries.

Option 2: Public Recursive Name
Server
I don't have to do anything since dnsmasq will be setup to query a public recursive DNS server like
Cloudflare's 1.1.1.1 and 1.0.0.1 .

$ apt install unbound

/etc/unbound/unbound.conf.d/local.conf
+ server:
+ 	interface: 127.0.0.1
+ 	interface: ::1
+ 	access-control: 127.0.0.1 allow
+ 	access-control: ::1 allow

$ systemctl restart unbound

https://en.wikipedia.org/wiki/Dnsmasq

Logging in LXC
Logging
One problem I ran into is that access to kernel logging is limited or unavailable from inside of a LXC
container. For some usecases (like netfilter's LOG action) any logging that happens in a LXC
container will be blackholed and not recorded anywhere without a change on the host. Most often
the solution to these permission/security problems is to find a way to allow access to these things
from userspace.

ulogd2
I solved the netfilter LOG problem by simply using ulogd2 to replace kernel logging with userspace
logging. After installing and configuring ulogd2 I just replaced any references to LOG with NFLOG
in my netfilter/iptables rules. Don't worry if this doesn't make sense right now I'll talk about this
more in the Firewall Setup section.

Installation

Configuration
To get the output I wanted I had to edit the ulogd2 config…

ulogd is a userspace logging daemon for netfilter/iptables related logging. This
includes per-packet logging of security violations, per-packet logging for
accounting, per-flow logging and flexible user-defined accounting.

“

apt install ulogd2

/etc/ulogd2.conf
- stack=log1:NFLOG,base1:BASE,ifi1:IFINDEX,ip2str1:IP2STR,print1:PRINTPKT,emu1:LOGEMU
+ #stack=log1:NFLOG,base1:BASE,ifi1:IFINDEX,ip2str1:IP2STR,print1:PRINTPKT,emu1:LOGEMU
...
+ stack=log1:NFLOG,base1:BASE,ifi1:IFINDEX,ip2str1:IP2STR,print1:PRINTPKT,firewall:LOGEMU

https://bookstack.swigg.net/books/linux/page/netfilteriptable-logging
https://bookstack.swigg.net/books/project-router/page/firewall-setup

Connection Tracking
Similarly to netfilter logging connection tracking in a LXC container is more limited due to not
having access to the host's /proc/ filesystem. But I can install conntrack to provide a way to see
connection tracking from userspace.

conntrack

Installation

+ stack=log2:NFLOG,base1:BASE,ifi1:IFINDEX,ip2str1:IP2STR,print1:PRINTPKT,firewall:LOGEMU
+ stack=log3:NFLOG,base1:BASE,ifi1:IFINDEX,ip2str1:IP2STR,print1:PRINTPKT,firewall:LOGEMU
+
+ [firewall]
+ file="/var/log/ulog/firewall.log"
+ sync=1

The conntrack utilty provides a full featured userspace interface to the Netfilter
connection tracking system that is intended to replace the old
/proc/net/ip_conntrack interface. This tool can be used to search, list, inspect
and maintain the connection tracking subsystem of the Linux kernel.

“

apt install conntrack

IPv4

IPv4

Firewall Setup
Install Shorewall
To manage nftables/iptables I decided to go with Shorewall since it is easy to configure and very
mature. At some point I may look into switching to FireHol since it looks even simpler to configure
but I wanted something I knew I'd be able to make do everything I needed.

I started by installing shorewall as my firewall, shorewall-doc which includes examples, and
shorewall-init which can lockdown the system at boot before Shorewall has had a chance to
configure the firewall.

Then I update the shorewall configuration to reflect that I'm using ulogd2 for logging and that I
want IPv4 forwarding enabled when shorewall starts.

All my configuration files are adapted from the examples that shorewall-doc makes available under
/usr/share/doc/shorewall/examples .

Setting up the zones is pretty self-explanitory. The only addition I made is I have a warp zone
which I will use later when I am setting up my VPN.

apt install shorewall shorewall-doc shorewall-init

/etc/shorewall/shorewall.conf
- LOG_LEVEL="info"
+ LOG_LEVEL="NFLOG(1,0,1)"
...
- LOGFILE=/var/log/messages
+ LOGFILE=/var/log/firewall.log
...
- IP_FORWARDING=Keep
+ IP_FORWARDING=Yes

/etc/shorewall/zones
+ #--
+ # For information about entries in this file, type "man shorewall-zones"

https://shorewall.org/
https://firehol.org/

Setting up the interfaces and assiging them zones is also pretty self-explanatory.

My real /etc/shorewall/policy file is less liberal than what is shown below (lan being allowed to access
whatever it wants) but I wanted to show a reasonably secure policy that allowed me to have a very
simple /etc/shorewall/rules config below.

+ #
+ # See http://shorewall.net/manpages/shorewall-zones.html for more information
+
###
############
+ #ZONE TYPE OPTIONS IN OUT
+ # OPTIONS OPTIONS
+ fw firewall
+ wan ipv4
+ lan ipv4
+ dmz ipv4
+ warp ipv4

/etc/shorewall/interfaces
+ #--
+ # For information about entries in this file, type "man shorewall-interfaces"
+ #
+ # See http://shorewall.net/manpages/shorewall-interfaces.html for more information
+
###
############
+ ?FORMAT 2
+
###
############
+ #ZONE		INTERFACE OPTIONS
+ wan		WAN_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,sourceroute=0,physical=eth0
+ lan		LAN_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,physical=eth1
+ dmz		DMZ_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,physical=eth1.8
+ warp		WARP_IF			tcpflags,dhcp,nosmurfs,routefilter,logmartians,physical=eth1.9

/etc/shorewall/policy
+ #--
+ # For information about entries in this file, type "man shorewall-policy"
+ #

Because my example policy is pretty open, my rules in this example are pretty sparse.

+ # See http://shorewall.net/manpages/shorewall-policy.html for more information
+
###
############
+ #SOURCE	DEST		POLICY		LOGLEVEL	RATE CONNLIMIT
+
+ $FW		all			ACCEPT
+ lan		all			ACCEPT
+ dmz		$FW,wan		ACCEPT
+ warp		$FW			ACCEPT
+
+ wan		all			DROP		$LOG_LEVEL
+ # THE FOLLOWING POLICY MUST BE LAST
+ all		all			REJECT		$LOG_LEVEL

/etc/shorewall/rules
+ #--
+ # For information about entries in this file, type "man shorewall-rules"
+ #
+ # See http://shorewall.net/manpages/shorewall-rules.html for more information
+
###
###
##
+ #ACTION SOURCE DEST PROTO DEST SOURCE ORIGINAL RATE USER/
MARK CONNLIMIT TIME HEADERS SWITCH HELPER
+ # PORT PORT(S) DEST LIMIT GROUP
+ ?SECTION ALL
+ ?SECTION ESTABLISHED
+ ?SECTION RELATED
+ ?SECTION INVALID
+ ?SECTION UNTRACKED
+ ?SECTION NEW
+
+ # Don't allow connection pickup from the net
+ Invalid(DROP) wan all tcp
+
+ DNS(ACCEPT) all!wan,warp $FW

Lastly is the magic that allows private addresses to access the Internet by masquerading them all
as my one public IPv4 address I am assigned. The following just says all traffic heading out of
WAN_IF (eth0) coming from a private IP range should be masqueraded.

Now that I have everything configured it might be wise to run shorewall check just to make sure I
didn't have any typos.

I hooked shorewall into the boot process to make sure the system is secure during boot by
enabling shorewall-init.service and shorewall.service. First I told shorewall-init that it needs to
account for shorewall when it runs.

Then I simply told those services to start at boot.

+ DNS(ACCEPT) $FW,dmz lan:10.0.1.2
+
+ Web(ACCEPT) dmz $FW
+ Web(DNAT) wan dmz:10.0.8.2

/etc/shorewall/snat
+ #--
+ # For information about entries in this file, type "man shorewall-snat"
+ #
+ # See http://shorewall.net/manpages/shorewall-snat.html for more information
+
###
###
#####
+ #ACTION SOURCE DEST PROTO PORT IPSEC MARK USER
SWITCHORIGDEST PROBABILITY
+ MASQUERADE 10.0.0.0/8,\
+ 169.254.0.0/16,\
+ 172.16.0.0/12,\
+ 192.168.0.0/16 WAN_IF

/etc/default/shorewall-init
- PRODUCTS=""
+ PRODUCTS="shorewall"

systemctl enable shorewall
systemctl enable shorewall-init

https://en.wikipedia.org/wiki/Network_address_translation

Modify Interfaces
Now that Shorewall will secure everything at bootup it is safe to update /etc/networking/interfaces and
add their IPv4 addresses.

Now if I reboot the system all my interfaces will come up configured and the system will be
protected by nftables/iptables configured by Shorewall.

/etc/networking/interfaces
 auto eth1
- iface eth1 inet manual
+ iface eth1 inet static
+ address 10.0.1.1/21

 auto eth1.8
- iface eth1.8 inet manual
+ iface eth1.8 inet static
 vlan-raw-device eth1
+ address 10.0.8.1/24

 auto eth1.9
- iface eth1.9 inet manual
+ iface eth1.9 inet static
 vlan-raw-device eth1
+ address 10.0.9.1/24

Be sure to sanity check the configuration so Shorewall doesn't block SSH access if that is
needed.

reboot

IPv4

DHCP and DNS Cache
Install dnsmasq
I decided to use dnsmasq since it can fulfull multiple roles as both a DHCP and DNS cache. I'll first
configure it for IPv4 and then later add in the few extra IPv6 lines needed.

Setup DHCP
The following can look complicated but that is just becuase there are a ton of MAC Addresses and
IP Addresses mixed throughout. If you look closely you can see that there are only four types of
lines.

1. no-dhcp-interface=eth0,lo prevents DHCP binding on our loopback address and eth0 which is
the interface facing the Internet.

2. dhcp-range= declares a start and stop address and lease lifetime for each subnet. I am
also setting an optional tag for each so I can target them later if I want.

3. dhcp-option= allows me to set specific DHCP options. The tag: allows me to target
addresses matching a specific tag. I am overriding the default DNS servers because I want
lan and dmz to use my Pi-hole server and warp should use a public DNS server since any
device on that subnet is routed through a VPN tunnel so it doesn't have local network
access.

4. dhcp-host= defines what IP addresses and hostnames get assigned to which network
device with a specific MAC address

/etc/dnsmasq.d/dhcp.conf
+ no-dhcp-interface=eth0,lo
+
+ dhcp-range=set:lan,10.0.5.1,10.0.7.254,12h
+ dhcp-range=set:dmz,10.0.8.1,10.0.8.254,12h
+ dhcp-range=set:warp,10.0.9.1,10.0.9.254,5m
+
+ dhcp-option=tag:lan,option:dns-server,10.0.1.2
+ dhcp-option=tag:lan,option:dns-server,10.0.1.2

https://thekelleys.org.uk/dnsmasq/doc.html
https://en.wikipedia.org/wiki/MAC_address
https://en.wikipedia.org/wiki/IP_address

Setup DNS Caching
Everything here is commented with an explanation of what it does. The only thing slightly
interesting is I have two server= parameters pointing to the IPv4 loopback addresses which is
where Unbound is listening. If Unbound wasn't being used I'd either remove no-resolv and use the
system namesevers or change the server= parameters to point to a public recursive name sever.

+ dhcp-option=tag:warp,option:dns-server,1.1.1.1,1.0.0.1
+
+ # LAN - network infrastructure
+ dhcp-host=aa:af:57:f3:4e:90,10.0.1.2,pihole			# pihole
+ dhcp-host=b4:fb:e4:8f:f9:74,10.0.1.3,unifi-switch-8	# unifi-switch-8
+
+ # LAN - proxmox
+ dhcp-host=e0:d5:5e:63:fe:30,10.0.3.2,blackbox			# blackbox
+ dhcp-host=70:85:c2:fe:4c:b7,10.0.3.3,mini				# mini
+ dhcp-host=6e:91:84:4a:74:f1,10.0.3.4,backup			# backup
+
+ # LAN - assigned devices
+ dhcp-host=d0:a6:37:ed:8c:7f,10.0.4.4,silverbook		# silverbook
+ dhcp-host=82:13:00:9c:c7:00,10.0.4.5,thunderbolt		# thunderbolt
+ dhcp-host=34:36:3b:7f:18:1e,10.0.4.8,jess				# jess
+ dhcp-host=96:64:5F:1C:A6:2C,10.0.5.6,refuge			# refuge
+ dhcp-host=7A:BC:46:D1:A3:1B,10.0.5.9,unifi			# unifi
+
+ # DMZ - assigned devices
+ dhcp-host=62:59:92:A7:1D:F1,10.0.8.5,bitcoin			# bitcoin
+ dhcp-host=32:cc:fb:a3:1a:57,10.0.8.2,contained		# contained

/etc/dnsmasq.d/dns.conf
+ # Add the domain to simple names (without a period) in /etc/hosts in the same way as for DHCP-derived
names.
+ expand-hosts
+
+ # Log the results of DNS queries handled by dnsmasq.
+ log-queries
+
+ # Do not listen on the specified interface.
+ except-interface=eth0,lo

https://en.wikipedia.org/wiki/Public_recursive_name_server

+
+ # Accept DNS queries only from hosts whose address is on a local subnet, ie a subnet for which an interface
exists on the server.
+ local-service
+
+ # Dnsmasq binds the address of individual interfaces, allowing multiple dnsmasq instances, but if new
interfaces or addresses appear, it automatically listens on those
+ bind-dynamic
+
+ # Return answers to DNS queries from /etc/hosts and --interface-name which depend on the interface over
which the query was received.
+ localise-queries
+
+ # All reverse lookups for private IP ranges (ie 192.168.x.x, etc) which are not found in /etc/hosts or the DHCP
leases file are answered with "no such domain"
+ bogus-priv
+
+ # Later versions of windows make periodic DNS requests which don't get sensible answers from the public
DNS and can cause problems by triggering dial-on-demand links.
+ filterwin2k
+
+ # Enable code to detect DNS forwarding loops
+ dns-loop-detect
+
+ # Reject (and log) addresses from upstream nameservers which are in the private ranges.
+ stop-dns-rebind
+
+ # Exempt 127.0.0.0/8 and ::1 from rebinding checks.
+ rebind-localhost-ok
+
+ # Tells dnsmasq to never forward A or AAAA queries for plain names, without dots or domain parts, to
upstream nameservers.
+ domain-needed
+
+ # Specifies DNS domains for the DHCP server.
+ domain=hermz.io
+
+ # Don't read /etc/resolv.conf. Get upstream servers only from the command line or the dnsmasq configuration
file.

Resolve Static Clients
One problem I ran into was that static clients never use DHCP so the DHCP server doesn't register
their hostname with their intended IP address. To work around this limitation I just added those
entries to the /etc/hosts file since by default dnsmasq will resolve using those entries too.

Reboot
Now that dnsmasq is fully configured I just restart it using systemctl

+ no-resolv
+
+ server=127.0.0.1
+ server=::1

/etc/hosts
+ 10.0.1.1 ember
+ 10.0.1.2 pihol
+ 10.0.1.3 unifi-switch-8
+ 10.0.3.2 blackbox
+ 10.0.3.3 mini
+ 10.0.3.4 backup
+ 10.0.3.5 edge

 # --- BEGIN PVE ---

systemctl restart dnsmasq.service

IPv6

IPv6

IPv6 Intro
Refresher
For a quick crash course into IPv6 checkout my IPv6 Quick Explainer guide.

Why Did I Setup IPv6?
Beyond just being good to know because it'll be what we're all using sooner than later there are a
few practical advantages of IPv6 over IPv4. Most important to me though is being able to have IP
addresses that don't have to be masqueraded by the router. This has several knock-on effects I
appreciate.

No Need for Hairpin NAT
I don't have to masquerade IP addresses which means that when I access a device from my LAN I
can use the same IP address that is used when people access a device from the WAN. I don't have
to setup a hacky Hairpin NAT or necessarily use Split-horizen DNS to just have everything work.
The less janky configurations I have to create and maintain to paper over problems of IPv4 the
better.

Fine-grained DNS Control
Because each device can have a publically routable address I can setup subdomains to actually
point to different addresses. As an example I can have wireguard.swigg.net point to my router IP
address for VPN access while *.swigg.net can point to my server IP address I am running in my DMZ.
With IPv4 I had to have them both point to my router public IP address and then use some sort of
proxy to forward based on hostname plus do something janky like above.

https://bookstack.swigg.net/books/guides/page/ipv6-quick-explainer
https://wiki.mikrotik.com/wiki/Hairpin_NAT
https://en.wikipedia.org/wiki/Split-horizon_DNS

IPv6

Firewall Setup
Install Shorewall6
Configuring Shorewall for IPv6 is nearly identical to how I did it for IPv4. The biggest different is I
can skip most things related to masquerading since that is less often necessary in the world of
IPv6.

The only changes that need to be made is installing and configuring shorewall6. I am not going to
go over everything again since it is nearly identical to Firewall Setup under IPv4 but pay close
attention to the path is now /etc/shorewall6

apt install shorewall6

/etc/shorewall6/shorewall.conf
- LOG_LEVEL="info"
+ LOG_LEVEL="NFLOG(1,0,1)"
...
- LOGFILE=/var/log/messages
+ LOGFILE=/var/log/firewall.log
...
- IP_FORWARDING=Keep
+ IP_FORWARDING=Yes

/etc/shorewall6/zones
+ #--
+ # For information about entries in this file, type "man shorewall-zones"
+ #
+ # See http://shorewall.org/manpages/shorewall-zones.html for more information
+
###
############
+ #ZONE TYPE OPTIONS IN OUT
+ # OPTIONS OPTIONS
+ fw firewall

https://bookstack.swigg.net/books/project-router-work-in-progress/page/firewall-setup

+ wan ipv4
+ lan ipv4
+ dmz ipv4
+ warp ipv4

/etc/shorewall6/interfaces
+ #--
+ # For information about entries in this file, type "man shorewall6-interfaces"
+ #
+ # See http://shorewall.org/manpages/shorewall-interfaces.html for more information
+
###
############
+ ?FORMAT 2
+
###
############
+ #ZONE		INTERFACE	OPTIONS
+ wan		WAN_IF		tcpflags,dhcp,forward=1,accept_ra=2,sourceroute=0,physical=eth0
+ lan		LAN_IF		tcpflags,dhcp,forward=1,physical=eth1
+ dmz		DMZ_IF		tcpflags,dhcp,forward=1,physical=eth1.8
+ warp		WARP_IF		tcpflags,dhcp,forward=1,physical=eth1.9

/etc/shorewall6/policy
+ #--
+ # For information about entries in this file, type "man shorewall-policy"
+ #
+ # See http://shorewall.net/manpages/shorewall-policy.html for more information
+
###
############
+ #SOURCE	DEST		POLICY		LOGLEVEL	RATE CONNLIMIT
+
+ $FW		all			ACCEPT
+ lan		all			ACCEPT
+ dmz		$FW,wan		ACCEPT
+ warp		$FW			ACCEPT
+
+ wan		all			DROP		$LOG_LEVEL
+ # THE FOLLOWING POLICY MUST BE LAST

At this point I just have an empty /etc/shorewall6/snat configuration because IPv6 doesn't need
masqueraded to access the Internet.

+ all		all			REJECT		$LOG_LEVEL

/etc/shorewall6/rules
+ #--
+ # For information about entries in this file, type "man shorewall-rules"
+ #
+ # See http://shorewall.net/manpages/shorewall-rules.html for more information
+
###
###
##
+ #ACTION			SOURCE DEST PROTO DEST SOURCE ORIGINAL RATE USER/
MARK CONNLIMIT TIME HEADERS SWITCH HELPER
+ # PORT PORT(S) DEST LIMIT GROUP
+ ?SECTION ALL
+ ?SECTION ESTABLISHED
+ ?SECTION RELATED
+ ?SECTION INVALID
+ ?SECTION UNTRACKED
+ ?SECTION NEW
+
+ # Don't allow connection pickup from the net
+ Invalid(DROP)		wan all tcp
+
+ DNS(ACCEPT)		all!wan,warp $FW
+ DNS(ACCEPT)		$FW,dmz lan:2001:db8:2fa3:4848::9a57:cec2
+
+ Web(ACCEPT)		dmz $FW
+ Web(ACCEPT)		wan dmz:2001:db8:2fa3:4848:66:1cb:59a7:bbe1

/etc/shorewall/snat
+ #--
+ # For information about entries in this file, type "man shorewall-snat"
+ #
+ # See http://shorewall.org/manpages/shorewall-snat.html for more information
+
###

Just like before it might be wise to run shorewall6 check just to make sure I didn't have any typos.

I already enabled shorewall-init.service to secure the system during boot so to hook in shorewall6 I
just needed to edit its configuration and then enable shorewall6.service to start at boot like I
already did for shorewall.service and shorwall-init.service.

Then I told it to start at boot.

Reboot
It isn't strictly neccessary to reboot but I just prefer to see my system as it would be after it starts
up.

###
#####
+ #ACTION SOURCE DEST PROTO PORT IPSEC MARK USER SWITCH
ORIGDEST PROBABILITY

/etc/default/shorewall-init
- PRODUCTS="shorewall"
+ PRODUCTS="shorewall shorewall6"

systemctl enable shorewall6

reboot

IPv6

Prefix Delegation
I'd recommend reading about Prefix Delegation to get a better understanding of it but the gist is
that using DHCPv6 it is possible to request a "prefix" where any IPv6 address starting with that will
be routed to the router. Then the router can use that to configure clients on the network to each
have a unique address instead of the router only one (as in IPv4) and having to share it using a
hack like masquerading.

Install A Client
There are a few different DHCPv6 clients you can use that support Prefix Delegation but I decided
to go with wide-dhcpv6-client. I also tried dhcpcd but found the configuration syntax to be a little
uglier.

The config below is doing a few different things that I'll list but you can read about all the possible
dhcp6c.conf configuration.

apt install wide-dhcpv6-client

/etc/wide-dhcpv6/dhcp6c.conf
+
+ interface eth0 {
+ # send rapid-commit;
+ send ia-na 0;
+ send ia-pd 1;
+ };
+
+ id-assoc na 0 {
+
+ };
+
+ id-assoc pd 1 {
+ prefix ::/60 infinity;
+
+ prefix-interface eth1 {

https://en.wikipedia.org/wiki/Prefix_delegation
https://manpages.debian.org/testing/wide-dhcpv6-client/dhcp6c.conf.5.en.html

Lines 3-7 use eth0 to request a "normal address" with ia-na and a delegrated prefix
range with ia-pd
Lines 9-11 are required and correspond to the "normal addresss" I asked for, but there is
no extra configuration needed
Lines 13 and 14 are the start of the prefix delegation block and I am specifying I want a
prefix that gives me a subnet of /60 . I know Comcast will give me a /60 which is
295,147,905,179,352,825,856 (two hundred ninety five quintillion, one hundred forty
seven quadrillion, nine hundred five trillion, one hundred seventy nine billion, three
hundred fifty two million, eight hundred twenty five thousand, eight hundred fifty six) so
that should be more than enough.
Lines 16-20 and the other similar blocks just specify what slice of the prefix I was
delegated that I want applied to each interface. The lines sla-id (Site-Level Aggregation
identifier) is just an index to a what is basically an IPv4 subnet, sla-len is the size of that
subnet (I requested a /60 so if our SLA is /4 then I end up with /64 which is ideal for an
IPv6 subnet), and ifid just defines that I want the first address available in our subnet
assigned to our interface. So if the IPv6 addresses assigned to this interface was
2601:1833:a3a:100::/64 the interface would have 2601:1833:a3a:100::1/64 assigned to it.

The next step was just to enable and run the service.

Then I was able to verify that I had publicaly accessible IPv6 addresses.

+ sla-id 0;
+ sla-len 4;
+ ifid 1;
+ };
+
+ prefix-interface eth1.8 {
+ sla-id 1;
+ sla-len 4;
+ ifid 1;
+ };
+
+ prefix-interface eth1.9 {
+ sla-id 2;
+ sla-len 4;
+ ifid 1;
+ };
+ };

systemctl enable --now wide-dhcpv6-client

Exactly like I hoped, I can see that using ia-nd to request a "normal address" for eth0 resulted in
2001:6020:ae3:1022:a4d3:f031:fb7e:e629/128 being assigned as my routers public IPv6 address. It also
looks like the prefix delegation worked since eth1 , eth1.8 , eth1.9 all have the same prefix with
incrementing SLA identifiers that you can see represented by 100 , 101 , 102 in their addresses.

ip -6 addr
1: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
 inet6 2001:6020:ae3:1022:a4d3:f031:fb7e:e629/128 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::2b0:c9ff:fe79:cd77/64 scope link
 valid_lft forever preferred_lft forever
2: eth1@if9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
 inet6 2601:1833:a3a:100::1/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::d45a:67ff:fec6:6688/64 scope link
 valid_lft forever preferred_lft forever
3: eth1.8@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
 inet6 2601:1833:a3a:101::1/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::d45a:67ff:fec6:6688/64 scope link
4: eth1.9@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP qlen 1000
 inet6 2601:1833:a3a:102::1/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::d45a:67ff:fec6:6688/64 scope link
 valid_lft forever preferred_lft forever
...

IPv6

DHCP and SLAAC
I already setup dnsmasq for IPv4 and so there is very little that needs to be done to add IPv6
support.

I just needed to add dhcp-range lines for each subnet. I am tagging them the same as before and
using the ::,constructor:<interface> syntax to tell dnsmasq to determine the the prefix the DHCPv6
range should be valid over from the GUAs (Global Unicast Addresse) (publically routable IPs) on
each interface. These were assigned in the previous section (Prefix Delegation) by wide-dhcpv6-

client. Declaring ra-stateless configures dnsmasq to use SLAAC to automatically configure clients in
this prefix.

Then I enabled router advertisements so dnsmasq will broadcast information to any potential
clients on the subnet.

/etc/dnsmasq.d/dhcp.conf
+ dhcp-range=set:lan,::,constructor:eth1,ra-stateless,12h
+ dhcp-range=set:dmz,::,constructor:eth1.8,ra-stateless,12h
+ dhcp-range=set:warp,::,constructor:eth1.9,ra-stateless,5m

/etc/dnsmasq.d/router-advertisements.conf
+ enable-ra

https://www.omnisecu.com/tcpip/ipv6/global-unicast-ipv6-addresses.php
https://bookstack.swigg.net/books/project-router-work-in-progress/page/prefix-delegation
https://en.wikipedia.org/wiki/IPv6#Stateless_address_autoconfiguration_(SLAAC)

Virtual Private Networking

Virtual Private Networking

Wireguard
I had two goals I wanted to accomplish with VPNs.

1. I need to redirect all outbound traffic from a specific subnet through a VPN so any client
on that subnet would have its privacy protected by the VPN.

2. Allow me to VPN into my home network from somehwere else and have access to
everything as if I was sitting on my computer at home.

Both of them could have been accomlished with any VPN most likely but I went with WireGuard
since it is a simple and fast VPN whose setup is similar to SSH so it was inuitive for me to setup.

Host Setup
To use Wireguard inside of a LXC container the host has to have Wireguard installed since LXC
guests are run with the kernel of the host system. Wireguard was first mainlined into the Linux
kernel in version 5.6 so with kernel versions using 5.6 or later it is already built in. Anything before
5.6 that doesn't specifically have Wireguard backported in will need to use kernel modules to get it
working. Wireguard.com has detailed instructions on how to install it on nearly any platform. Since I
am using Proxmox as my host it was already backported into the kernel.

Guest Setup
Additionally I needed the wireguard-tools package in the LXC guest and resolvconf so DNS can be
configured properly.

echo "deb http://deb.debian.org/debian buster-backports main" > /etc/apt/sources.list.d/buster-backports.list
apt update
apt install --no-install-recommends wireguard-tools
apt install resolvconf

https://bookstack.swigg.net/books/networking/page/wireguard
https://www.wireguard.com/install/

Virtual Private Networking

Route Subnet Through
Wireguard Interface
Funneling all traffic from an Ethernet interface through a Wireguard interface is relatively easy
once I became familar with how packets flow through Linux. I mostly just needed to modify my
Wireguard *.conf file to add the Table , PostUp , and PreDown parameters.

Create Interface
Creating the configuration file is a bit out of the scope of this document. A VPN provider that
supports Wireguard will likely just provide a pre-built configuration file. But I also have a brief
overview of how you'd make one.

Line 5: All rules/routes should be applied to a custom route table 9 . I could have also named my
custom route table by running echo "9 warp" > /etc/iproute2/rt_tables and then say Table = warp for

I also needed to setup IP masquerading of outgoing traffic on my Wireguard interface. See
below for instructions.

/etc/wireguard/warp.conf
[Interface]
PrivateKey = ****
Address = 10.10.20.59/19, 2a03:4012:4021:80af::1f3c/64
DNS = 10.10.0.1, 2a03:4012:4021:80af::1
Table = 9
PostUp = ip rule add iif eth1.9 lookup 9; ip -6 rule add iif eth1.9 lookup 9
PreDown = ip rule del iif eth1.9 lookup 9; ip -6 rule del iif eth1.9 lookup 9

[Peer]
PublicKey = T28Qn5VFzT4wiwEPd7DscwcP3Rsmq23QcnjH1N5G/wc=
Endpoint = wireguard.vpn-provider.example:51820
AllowedIPs = 0.0.0.0/0, ::0/0...

https://bookstack.swigg.net/books/networking/page/wireguard
https://bookstack.swigg.net/books/networking/page/wireguard

improved readability.

Line 6: Adds rules for IPv4 and IPv6 that all traffic coming in interface eth1.9 should use custom
route table 9 . Because I defined a peer with AllowedIPs = 0.0.0.0/0, ::0/0 a default route will be setup
on custom route table 9 that redirects all traffic to the Wireguard interface. If I named my custom
route like shown above I could have said lookup warp inplace of lookup 9 .

Line 7: Just the inverse of line 5 to clean up after myself when taking down the Wireguard
interface.

Setup IP Masquerading

Source: Wikipedia

Configuration
The easiest way to set this up are to append some netfilter rules to the PostUp and PreDown
parameters.

Although this works fine there is a risk of the iptables/netfilter rules getting squashed by Shorewall
if it is restarted while the Wireguard interface exists. It is best to have Shorewall setup the
masquerading by making a simple declaration in /etc/shorewall/snat . I've included the other
Shorewall configuration files that would be necessary to make this setup work.

First I define the wg zone…

IP Masquerading is a technique that hides an entire IP address space, usually
consisting of private IP addresses, behind a single IP address in another, usually
public address space.

“

...
PostUp = ...; iptables -t nat -A POSTROUTING -o wg0 -j MASQUERADE
PreDown = ...; iptables -t nat -D POSTROUTING -o wg0 -j MASQUERADE

[Peer]
...

/etc/shorewall/zones
 #ZONE TYPE OPTIONS IN OUT

https://en.wikipedia.org/wiki/Network_address_translation

Then I define the interface WG_IF and put it in the wg zone…

This tells Shorwall to masquerade all IPs going out on WG_IF …

Then I allow the warp zone to send packets to the wg zone. The warp zone isn't allowed to send
packets to any other subnet or the wan . This prevents any data/privacy spills from happening if
the Wireguard interface ever goes down. It is always best to fail into a state that protects security
and privacy.

 # OPTIONS OPTIONS
 warp ipv4
+ wg ipv4

/etc/shorewall/interfaces
 #ZONE	INTERFACE	OPTIONS
 warp	WARP_IF		tcpflags,nosmurfs,routefilter=2,logmartians,physical=eth1.9
+ wg	WG_IF		physical=wg0

/etc/shorewall/snat
 #ACTION		SOURCE		DEST
+ MASQUERADE	0.0.0.0/0	WG_IF

/etc/shorewall/policy
 #SOURCE	DEST		POLICY LOGLEVEL RATE CONNLIMIT
- warp		$FW			ACCEPT $LOG_LEVEL
+ warp		$FW,wg		ACCEPT $LOG_LEVEL

Virtual Private Networking

Remote Access
Allowing remote access is just a matter of setting up a new Wireguard interface, allowing incoming
traffic to that interface, and making sure the firewall allows that traffic to connect to the rest of the
network.

Create Interface

Then I modified my file to finish configuring the interface and allow a [Peer] for my laptop.

Line 4: Sets an IPv4 and IPv6 address for this interface. These will be the servers IPs on each
virtual subnet.

Line 5: Sets the port to listen to for this interface. It is just the default Wirgaurd port and I'll allow
traffic through the firewall for it soon.

Line 7-10: Declare a peer, define the public key to use when communicating and validaing any
connections, set what IPs the peer is allowed to use on each virtual subnet, and configure a pre-
shared key for additional secuirty.

cd /etc/wireguard
umask 077
wg genkey | tee guard.key | wg pubkey > guard.pub
printf "[Interface]\PrivateKey = %s\n" `cat guard.key`

/etc/wireguard/guard.conf
[Interface]
PrivateKey = ****
+ Address = 10.0.2.1/28, 2001:db8:2ebf:2::1/64
+ ListenPort = 51820
+
+ [Peer]
+ PublicKey = Iz5ceR0+tCN3BLTWehZxSplzdbABRT8geqifFxubHUA=
+ AllowedIPs = 10.0.2.4/32, 2001:db8:2ebf:1::4/128
+ PresharedKey = ***

Firewall Configuration
First I had to declare a new interface and since I want it to be as if I was sitting on my laptop at
home, I put it in the lan zone.

For outside clients to connect I need to add a rule that allows them to connect to the firewall on
port 51820.

The last step is to once again setup masquerading so traffic from clients on the Wireguard subnet
appear to be originating from the wgguard interface which is in the lan zone.

A preshard key can be generated by running wg genpsk and must be the same on both the
[Peer] block on the server and the [Interface] block on the client.

/etc/shorewall/interfaces
...
 #ZONE	INTERFACE	OPTIONS
...
 wg	WGAZSE1_IF	tcpflags,nosmurfs,routefilter,logmartians,physical=wgazse1
+ lan	WGGUARD_IF	tcpflags,nosmurfs,routefilter,logmartians,physical=wgguard

/etc/shorewall/interfaces
...
 #ZONE	INTERFACE	OPTIONS
...
 wg	WGAZSE1_IF	tcpflags,nosmurfs,routefilter,logmartians,physical=wgazse1
+ lan	WGGUARD_IF	tcpflags,forward=1,physical=wgguard

/etc/shorewall[6]/rules
+ ACCEPT wan,lan $FW udp 51820

/etc/shorewall/snat
+ MASQUERADE		10.0.2.0/28				WAN_IF,LAN_IF,DMZ_IF

/etc/shorewall6/snat
+ MASQUERADE		fde9:2375:2ebf:2::/64	WAN_IF,LAN_IF,DMZ_IF

Bonded Interface
work in progress

Network Intrusion Detection
work in progress

Traffic Graphing/Monitoring
work in progress

