
Route Subnet Through
Wireguard Interface
Funneling all traffic from an Ethernet interface through a Wireguard interface is relatively easy
once I became familar with how packets flow through Linux. I mostly just needed to modify my
Wireguard *.conf file to add the Table , PostUp , and PreDown parameters.

Create Interface
Creating the configuration file is a bit out of the scope of this document. A VPN provider that
supports Wireguard will likely just provide a pre-built configuration file. But I also have a brief
overview of how you'd make one.

Line 5: All rules/routes should be applied to a custom route table 9 . I could have also named my
custom route table by running echo "9 warp" > /etc/iproute2/rt_tables and then say Table = warp for
improved readability.

I also needed to setup IP masquerading of outgoing traffic on my Wireguard interface. See
below for instructions.

/etc/wireguard/warp.conf
[Interface]
PrivateKey = ****
Address = 10.10.20.59/19, 2a03:4012:4021:80af::1f3c/64
DNS = 10.10.0.1, 2a03:4012:4021:80af::1
Table = 9
PostUp = ip rule add iif eth1.9 lookup 9; ip -6 rule add iif eth1.9 lookup 9
PreDown = ip rule del iif eth1.9 lookup 9; ip -6 rule del iif eth1.9 lookup 9

[Peer]
PublicKey = T28Qn5VFzT4wiwEPd7DscwcP3Rsmq23QcnjH1N5G/wc=
Endpoint = wireguard.vpn-provider.example:51820
AllowedIPs = 0.0.0.0/0, ::0/0...

https://bookstack.swigg.net/books/networking/page/wireguard
https://bookstack.swigg.net/books/networking/page/wireguard

Line 6: Adds rules for IPv4 and IPv6 that all traffic coming in interface eth1.9 should use custom
route table 9 . Because I defined a peer with AllowedIPs = 0.0.0.0/0, ::0/0 a default route will be setup
on custom route table 9 that redirects all traffic to the Wireguard interface. If I named my custom
route like shown above I could have said lookup warp inplace of lookup 9 .

Line 7: Just the inverse of line 5 to clean up after myself when taking down the Wireguard
interface.

Setup IP Masquerading

Source: Wikipedia

Configuration
The easiest way to set this up are to append some netfilter rules to the PostUp and PreDown
parameters.

Although this works fine there is a risk of the iptables/netfilter rules getting squashed by Shorewall
if it is restarted while the Wireguard interface exists. It is best to have Shorewall setup the
masquerading by making a simple declaration in /etc/shorewall/snat . I've included the other
Shorewall configuration files that would be necessary to make this setup work.

First I define the wg zone…

IP Masquerading is a technique that hides an entire IP address space, usually
consisting of private IP addresses, behind a single IP address in another, usually
public address space.

“

...
PostUp = ...; iptables -t nat -A POSTROUTING -o wg0 -j MASQUERADE
PreDown = ...; iptables -t nat -D POSTROUTING -o wg0 -j MASQUERADE

[Peer]
...

/etc/shorewall/zones
 #ZONE TYPE OPTIONS IN OUT
 # OPTIONS OPTIONS

https://en.wikipedia.org/wiki/Network_address_translation

Then I define the interface WG_IF and put it in the wg zone…

This tells Shorwall to masquerade all IPs going out on WG_IF …

Then I allow the warp zone to send packets to the wg zone. The warp zone isn't allowed to send
packets to any other subnet or the wan . This prevents any data/privacy spills from happening if
the Wireguard interface ever goes down. It is always best to fail into a state that protects security
and privacy.

 warp ipv4
+ wg ipv4

/etc/shorewall/interfaces
 #ZONE	INTERFACE	OPTIONS
 warp	WARP_IF		tcpflags,nosmurfs,routefilter=2,logmartians,physical=eth1.9
+ wg	WG_IF		physical=wg0

/etc/shorewall/snat
 #ACTION		SOURCE		DEST
+ MASQUERADE	0.0.0.0/0	WG_IF

/etc/shorewall/policy
 #SOURCE	DEST		POLICY LOGLEVEL RATE CONNLIMIT
- warp		$FW			ACCEPT $LOG_LEVEL
+ warp		$FW,wg		ACCEPT $LOG_LEVEL

Revision #5
Created 2 April 2021 02:44:17 by dustin@swigg.net
Updated 8 April 2021 13:07:48 by dustin@swigg.net

